
More than Skin Deep: Measuring Effects of the Underlying
Model on Access-Control System Usability

Robert W. Reeder
Microsoft

Redmond, WA
roreeder@microsoft.com

Lujo Bauer
Carnegie Mellon University

Pittsburgh, PA
lbauer@cmu.edu

Lorrie Faith Cranor
Carnegie Mellon University

Pittsburgh, PA
lorrie@cmu.edu

Michael K. Reiter
University of North Carolina, Chapel Hill

Chapel Hill, NC
reiter@cs.unc.edu

Kami Vaniea
Carnegie Mellon University

Pittsburgh, PA
kami@cmu.edu

ABSTRACT
In access-control systems, policy rules conflict when they
prescribe different decisions (ALLOW or DENY) for the same
access. We present the results of a user study that demon-
strates the significant impact of conflict-resolution method
on policy-authoring usability. In our study of 54 partici-
pants, varying the conflict-resolution method yielded statis-
tically significant differences in accuracy in five of the six
tasks we tested, including differences in accuracy rates of up
to 78%. Our results suggest that a conflict-resolution method
favoring rules of smaller scope over rules of larger scope is
more usable than the Microsoft Windows operating system’s
method of favoring deny rules over allow rules. Perhaps
more importantly, our results demonstrate that even seem-
ingly small changes to a system’s semantics can fundamen-
tally affect the system’s usability in ways that are beyond the
power of user interfaces to correct.

Author Keywords
access control, security, human factors

ACM Classification Keywords
H.1.2 User/Machine Systems: Human factors; D.4.6 Secu-
rity and Protection: Access controls; H.5.2 User Interfaces:
User-centered design

General Terms
Experimentation, Human Factors, Security

INTRODUCTION
Access-control policies must be specified correctly to ensure
that authorized access is allowed while unauthorized access
is denied. One obstacle to accurate access-control policies
is human error; the people who author and maintain these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

policies—whom we call “authors” or “policy authors”—are
prone to making specification errors that lead to incorrect
policies [8, 16, 21].

Rule conflicts are one important area of difficulty for policy
authors. Access-control policies consist of a set of rules that
dictate the conditions under which users will be allowed ac-
cess to resources. These rules may conflict with each other.
For example, one rule may allow user u access to file f ,
while a second rule may deny group g, of which u is a mem-
ber, access to f . Past work has shown that authors have dif-
ficulty detecting and resolving rule conflicts [16].

Usability improvements to security systems, such as access-
control systems, can come from two sources: improvements
to user interfaces and changes to underlying system models.
User interfaces for policy-authoring systems have already
received a fair amount of attention from researchers [3, 9,
14, 16, 18, 23], so we set out to improve usability in an
access-control policy authoring system by varying an as-
pect of the underlying access-control model. Specifically,
we studied the conflict-resolution method, which is the algo-
rithm an access-control system uses for determining which
rule, of a set of rules in conflict, will take precedence over
others. We describe a conflict-resolution method that we ex-
pect will lead to fewer specification errors. Our method is
aimed particularly at improving upon the Windows NTFS
conflict-resolution method, since Windows is such a widely
deployed operating system, and since it has been shown to
be prone to policy-specification problems [16, 21].

We implemented our conflict-resolution method and the Win-
dows method in a simulated Windows NTFS file system.
For a policy-authoring user interface across both conflict-
resolution method conditions, we used the Expandable Grid,
which has been shown in past work to be more usable than
the equivalent Windows interface [18]. An Expandable Grid
(see Figure 2) is an interactive visualization that approxi-
mates Lampson’s access-control matrix [15]. It displays ef-
fective policy resulting from an underlying set of rules and
permits authors to modify effective policy directly.

We evaluated our conflict-resolution method by running a
user study in which participants performed a variety of tasks
using one of three different combinations of interface and
conflict-resolution method: Grid with Windows conflict-res-
olution method, Grid with our conflict-resolution method,
and Windows interface with Windows conflict-resolution
method. Since two of our conditions use the same inter-
face, we can compare the effect of just the conflict-resolution
method on usability, with interface held constant. Our results
show that the choice of conflict-resolution method can have
a profound effect on usability. Whichever conflict-resolution
method selects the intended rule for a given task by default
(and thus requires no action from the policy author) is the
more usable for that task. Moreover, we demonstrate that
our conflict-resolution method is far more usable for tasks
that require the author to take action — leading to gains of
up to 78% in accuracy rates. (Of course, many considera-
tions go into choosing an access-control model for a given
usage context, so our method, while better for usability, may
not be best for all contexts.)

Our results also illustrate a larger point about designing us-
able security systems. Designing security systems has tradi-
tionally been the work of expert security architects versed in
technical arcana like access control and cryptography. The
work of making a security system usable is typically pushed
to usability experts after the work of the security architects
is done, so that a suitable user interface can make the under-
lying security model usable by humans. Some researchers
have suggested this “security-then-usability” approach is sub-
optimal; they suggest “user-centered security” in which us-
ability is considered early on, as part of the process of de-
signing the security model as well as the interface [1, 13,
24]. Following the logic of user-centered security, the ulti-
mate usability of a system should be affected by both under-
lying model and interface. Our results provide empirical ev-
idence that this proposition is true, at least for access-control
models, and that leaving usability as an end-of-cycle, user-
interface-only solution is misguided. In fact, security-model
decisions made early in the development lifecycle can have
a substantial impact on usability, even when those decisions
at first appear to bear no relation to usability. We show that
while the user interface is clearly an important part of a sys-
tem’s usability, underlying models also matter a great deal.

PROBLEM DESCRIPTION
Our objective is to find a conflict-resolution method that helps
authors accurately set the policies they intend. Specifically,
we want a conflict-resolution method that helps authors set
policies accurately in the presence of rule conflicts.

We define an access-control policy to consist of rules, which
are tuples of the form (principal, resource, action, deci-
sion). Principals may be users or groups containing users;
in Windows, groups cannot contain other groups, but differ-
ent groups may have overlapping memberships. Resources
may be files or folders; resources are arranged in a strict hi-
erarchy, so folders cannot have overlapping memberships.
READ and WRITE are examples of actions. Decisions can
be ALLOW or DENY. Requests to an access-control system

are tuples of the form (principal, resource, action). A rule
matches a request if the rule’s principal, resource and action
contain (or equal) the request’s principal, resource, and ac-
tion, respectively. Rules that match a request conflict if they
prescribe different decisions for that request. When conflict-
ing rules apply to a request, the conflict-resolution method
comes into play to resolve the conflict. The resulting map-
pings of requests to decisions are known as effective permis-
sions.

Conflict-resolution methods
To resolve rule conflicts, there must be a method for un-
ambiguously choosing a decision. Most conflict-resolution
methods in practice choose one of the rules in conflict to
take precedence over the others. (Other methods are possi-
ble, however, such as “majority rules.”) Note that it is suffi-
cient to define these methods in terms of their behavior when
exactly two rules are in conflict, because the access control
system can handle cases of more than two rules in conflict
by following a simple algorithm that does paired matches
of each ALLOW rule against each DENY rule. This algo-
rithm issues an ALLOW decision if any ALLOW rule wins
its matches against every DENY rule, and otherwise issues a
DENY decision.

While numerous methods for choosing rules to take prece-
dence are possible, two are relevant to this paper:

• Specificity precedence: A rule that applies to a more spe-
cific entity (principal or resource) takes precedence over
a rule that applies to a more general entity. For example,
a rule that applies to a user takes precedence over a rule
that applies to a group, or a rule that applies to a subfolder
or file takes precedence over a rule that applies to the sub-
folder’s or file’s parent.

• Deny precedence: DENY rules take precedence over AL-
LOW rules.

These conflict-resolution methods may be used in combina-
tion. It is possible to use different conflict-resolution meth-
ods depending on whether conflicting rules differ in the prin-
cipals they cover, the resources they cover, or both. It may
also be necessary to resort to multiple conflict-resolution
methods when one method fails to resolve a conflict. For ex-
ample, when conflicting rules cover groups, but those groups
are peers of each other (i.e., neither contains the other), speci-
ficity precedence cannot resolve the conflict.

Weaknesses of the Windows NTFS method
The Windows NTFS conflict-resolution method combines
specificity and deny precedence. When conflicting rules dif-
fer only in their resources, specificity precedence is used.
When conflicting rules differ only in their principals, deny
precedence is used. When conflicting rules differ in both
principals and resources, specificity precedence is used.

The Windows conflict-resolution method has two primary
weaknesses we seek to improve upon. First, the use of deny
precedence not only leads to specification errors, it also makes
certain policy configurations impossible. Second, the Win-

Figure 1. The Windows XP file permissions interface. The left-hand screenshot shows rules applying to Jana that appear to state that Jana is allowed
to read and write the operative file, but the right-hand screenshot shows rules applying to a group of which Jana is a member that conflict with Jana’s
rules. If a policy author does not know that Jana is in the group and that the DENY rules take precedence, the author may have difficulty determining
the effective permissions in the presence of a rule conflict.

dows behavior in the presence of a two-dimensional conflict,
in which one rule is more specific in its principal and an-
other rule is more specific in its resource, is likely to confuse
some policy authors’ expectations. We discuss each of these
weaknesses below.

Deny precedence
By using deny precedence, the Windows conflict-resolution
method leads to violations of direct manipulation, a user-
interface design principle stating that interfaces should allow
users to operate directly on objects or data of interest [20].
In policy-authoring interfaces, direct manipulation translates
to allowing authors to change effective policy directly when-
ever possible.

The Jana task, one of the tasks we assigned to participants
in our user study (see the “User study method” section), is
a good example of where the Windows conflict-resolution
method leads to violations of direct manipulation. The goal
of the task is to allow Jana read and write access to a file.
Jana is initially a member of two groups, one of which is
allowed access to the file and the other of which is denied
access to that file. Windows uses deny precedence to resolve
the conflict, so Jana is effectively denied access to the file.
However, many authors do not understand this; they may
see only the rule allowing Jana access, and not realize that
another rule conflicts with it. Even if they do notice the con-
flict, it is not easily resolved. There are two ways to grant
Jana access: the DENY rule applying to the latter group can
be removed, or Jana can be removed from the group. Direct
manipulation is violated because the task cannot be com-
pleted by simply manipulating rules applying to Jana; the
task requires making a change at the group level. Moreover,

both potential solutions may lead to undesirable side effects.
Removing the DENY rule may change policy for the other
members of the group and for members added to the group
in the future. Removing Jana from the group may be un-
desirable since it may affect Jana’s permissions on other re-
sources. The Windows conflict-resolution method provides
no entirely satisfactory way to complete the Jana task.

Figure 1 shows the Windows file permissions user interface.
The screenshot on the left shows the approach many partici-
pants in our study took to try to resolve the conflict; they set a
rule applying specifically to Jana indicating that she can read
and write the file. However, under the Windows conflict-
resolution method, Jana is still denied access because of the
group rule, shown in the right-hand screenshot of Figure 1,
that denies access to the file. Because it is difficult to view
effective permissions in the Windows interface (the display
of effective permissions is buried three mouse clicks away),
many authors assumed they had correctly completed the task
when in fact they had not.

The Expandable Grid interface, shown in Figure 2, was de-
signed to show effective permissions prominently and to al-
low the author to directly manipulate them. In the Expand-
able Grid screenshot shown in the figure, the cells at the in-
tersection of “jana” and the “Four-part harmony.doc” file are
red, indicating that Jana cannot read or write the file. To
stay faithful to the principle of direct manipulation, an author
should be able to click on the red squares to allow Jana to ac-
cess the file. The author should see the squares turn green,
which indicates an effective permission of ALLOW. Unfor-
tunately, under the Windows conflict-resolution method, di-
rect manipulation is still impossible, even in the Grid inter-

face. Clicking on the red squares can set ALLOW rules that
state that Jana can read and write the file, but the rules will
not take effect until the conflicting group DENY rule is re-
moved, or Jana is removed from the group. Even when the
user clicks on them, the red squares stay red. The conflict-
resolution method we propose in the “Proposed solution”
section enables direct manipulation of effective permissions
in the Grid interface for the Jana task.

Figure 2. Our Expandable Grid interface for setting file permissions in
Windows XP. The interface shows principals along the upper axis, re-
sources along the left-hand axis, and the effective permissions applying
to the principals and resources in the colored squares in the grid itself.

Two-dimensional conflicts
Besides violations of direct manipulation in the presence
of rule conflicts, we seek to improve upon a second aspect
of the Windows conflict-resolution method: behavior in the
presence of a two-dimensional conflict. A two-dimensional
conflict occurs when two rules are in conflict and one rule
is more specific in the principal dimension (i.e., the dimen-
sion of users and groups) while the other is more specific
in the resource dimension. For example, in the Lance task
we describe in the “User study method” section, one rule
denies Lance access to an Admin folder, but another rule
allows a group he is in access to the gradebook.xls file con-
tained in the Admin folder. Since neither rule is strictly more
specific than the other, specificity precedence cannot resolve
this conflict. Windows resolves such conflicts by favoring
the resource dimension over the principal dimension, so the
rule that is more specific in the resource dimension will take
precedence. Since Windows uses deny precedence to resolve
other conflicts, some authors may expect deny precedence to
also resolve two-dimensional conflicts, so this aspect of the
Windows conflict-resolution method is likely to be incon-
sistent with some authors’ expectations. Moreover, some
authors may expect the principal dimension to be favored,
rather than the resource dimension.

PROPOSED SOLUTION
We propose a conflict-resolution method that we believe will
address the weaknesses of the Windows conflict-resolution
method. We propose to use specificity precedence, in both
principals and resources, to resolve conflicts when possible
and to resort to deny precedence only when specificity prece-
dence fails. By using specificity precedence, we address
the rule-conflict weakness in Windows in which the conflict-
resolution method violates direct manipulation. Specificity
ensures support for direct manipulation for rules that cover
users and files. Thus, tasks like the Jana task are easily
completed using the Grid with our specificity-based conflict-
resolution method; clicking Jana’s red squares turns them
green. The rule-conflict weakness in Windows where either
a group access rule has to be changed or Jana has to be re-
moved from the group is solved by allowing a specific rule
that applies to Jana to take effect.

To address the weakness of the Windows conflict-resolution
method in the case of a two-dimensional conflict, our pro-
posed method uses deny precedence for two-dimensional con-
flicts. Since there is no natural way to resolve such con-
flicts using specificity, we ensure fail safety by using deny
precedence. We believe the Windows use of specificity in
the resource dimension is likely to be confusing to policy
authors, who may expect that deny precedence would apply
in these situations. Our choice of deny precedence may or
may not be confusing, but at least it is safe and, in any case,
it is easily overridden by creating a rule that is equally or
more specific in both resources and principals than the rules
in conflict. Note that while we resort to deny precedence
in two-dimensional conflicts, the fact that our method uses
specificity precedence first means that overriding the two-
dimensional conflict with a more specific rule is easy.

Table 1 shows the differences between our specificity-based
conflict-resolution method and the Windows method. It lays
out the entire space of rule conflicts with respect to the struc-
tural relations between principals and resources of the rules
in conflict. In a conflict, there will be an ALLOW rule in con-
flict with a DENY rule. The static differences between our
method and the Windows method can be seen in two of the
table cells: first, where the ALLOW rule’s principal is con-
tained by (and thus is more specific than) the DENY rule’s
principal, but the two rules’ resources are the same; second,
where the ALLOW rule’s principal contains the DENY rule’s
principal, but the ALLOW rule’s resource is contained by the
DENY rule’s resource. However, the most significant differ-
ence between the two methods is in some of the conflicts
where both methods give a DENY decision, but the author
intends an ALLOW decision. Our specificity method makes
these cases easier to fix than does the Windows method.

From a usability perspective, a good conflict-resolution meth-
od is one that gives the decision the author intends, or, if it
cannot give the intended decision by default, makes it easy
to change the policy to get the right decision. No method
can always make the intended decision by default, since it
cannot know the author’s intention. Thus, it is on the latter
point—the ease of changing the policy—that we expect our

Table 1. Table showing which rule, of an ALLOW rule and a DENY rule in conflict, will take precedence for our specificity-based conflict resolution
method (S) and the Windows method (W). The table shows the relevant cases defined by the rules’ principals and resources. Each cell shows which
rule takes precedence and the conflict-resolution method in play: specificity in the resources, specificity in the principals, specificity in both resources
and principals, or deny precedence. In the case where both rules’ resources and principals are the same, there will be no conflict, since the more
recently set rule will have overwritten the other.

ALLOW rule’s principal is DENY rule’s principal
Less specific than Peer of Same as More specific than

ALLOW rule’s
resource is
DENY rule’s
resource

Less specific
than

DENY (both) DENY (resources) DENY (resources) S:DENY (deny)
W:DENY (resources)

Same as S:DENY (principals) DENY (deny) no conflict S:ALLOW (principals)
W:DENY (deny) W:DENY (deny)

More specific
than

S:DENY (deny) ALLOW (resources) ALLOW (resources) ALLOW (both)W:ALLOW (resources)

method to have the greatest usability gains over the Win-
dows method. To resolve a conflict for which the conflict-
resolution method is not already giving the intended deci-
sion by default, an author must (1) notice the problem; and
(2) fix it. The Expandable Grid, by virtue of showing effec-
tive permissions directly, makes noticing the problem much
easier than does the Windows interface, and our specificity
conflict-resolution method makes fixing the problem easier
by allowing user-level exceptions to group rules, instead of
requiring that a user be removed from a group or requiring
an entire group’s permissions to change. In the Jana task,
for example, both methods will result in a DENY decision,
but specificity allows an author to specify an exception for
Jana to the group-level DENY decision, while Windows sim-
ply does not allow such an exception, and instead forces the
author to make a group-level policy change.

USER STUDY METHOD
We have argued that our conflict-resolution method should
be more usable than the Windows method for tasks that re-
quire action from the policy author because our method en-
ables direct manipulation in the Grid interface. To test this
argument empirically, we ran a laboratory user study to mea-
sure the effects of conflict-resolution method on policy-auth-
oring usability, as measured by task-completion accuracy.
Our study had 54 participants, who each performed 12 policy-
authoring tasks in one of three experimental conditions. Ex-
perimental conditions were combinations of interface and
conflict-resolution method. We used a between-participants
design, so 18 participants were in each of the three condi-
tions. We measured accuracy for each task. The three con-
ditions we compared were:

• the Grid interface with our specificity-based conflict reso-
lution method, a combination henceforth called GS;

• the Grid interface with Windows conflict-resolution meth-
od, a combination henceforth called GW; and

• the Windows interface with the Windows conflict-resolu-
tion method, a combination henceforth called WW.

The WW condition served as the control in our study; it was
the condition on which we hoped to improve. The GS con-
dition is our best effort at improving upon WW, because
GS has both the visual presentation advantages of the Ex-
pandable Grid and the expected advantages of our conflict-

resolution method. The GW interface serves to help us sep-
arate the effects of the Grid as a presentation technique from
the effects of the conflict-resolution method. When we ob-
serve differences between the GW and WW conditions, we
attribute them to the Grid presentation (i.e., the user inter-
face), and when we observe differences between the GW and
GS conditions, we attribute them to the conflict-resolution
method (i.e., the underlying model). Differences between
the GS and WW conditions are the cumulative effect of the
Grid presentation and the specificity-based conflict-resolution
method. (Note that, while results from a fourth combina-
tion of the Windows interface with the specificity conflict-
resolution method would have been enlightening, it was in-
feasible to implement such a combination for this study.)

We recruited 54 undergraduate and graduate students from
technical disciplines (science, engineering, or mathematics)
to participate in the study. Eighteen were female. Partici-
pants were all daily computer users, but had never served as
system administrators. As in prior work evaluating the Ex-
pandable Grid interface [18], our participant pool was con-
sistent with a target demographic of novice and occasional
policy authors. The policy authoring population largely con-
sists of information technology professionals with some tech-
nical education who have so many job responsibilities that
access-control is an occasional activity. Other populations,
like managers and staff, author policy but were out of scope
for this study.

Task design
Of the 12 tasks in which each subject participated, six were
designed to test the advantages and disadvantages of each of
the two conflict-resolution methods, as well as the overall
usability of each interface/conflict-resolution-method com-
bination. We discuss only these six tasks here. (The other
six tasks are fully reported elsewhere [17].) All tasks were
based on a teaching assistant (TA) scenario, in which the par-
ticipant is put in the role of a TA maintaining the file server
for a hypothetical music department. The hypothetical file
server contained roughly 500 principals and 500 resources.
Each task is defined by its task statement (i.e., the text we
presented to participants in the study) and its initial con-
figuration, including existing access rules, group member-
ships, and file locations. Task statements asked participants
to make changes to the initial configuration.

The tasks were designed in pairs: the Charles/Kent pair,
the Lance/Adria pair, and the Jana/Pablo pair. For the
Charles/Kent and Lance/Adria pairs, the tasks are structured
similarly except that goals are inverted. This way, each pair
of tasks has a task that favors our conflict-resolution method
and a task that favors the Windows conflict-resolution
method. The Jana and Pablo tasks share essentially the same
structure, though they differ superficially in the specific
users and files involved. We used two tasks with the same
structure because this structure best illustrates the advan-
tage of specificity precedence, and we wanted to show that
any usability differences between conflict-resolution meth-
ods were due to the underlying task structure and not the su-
perficial aspects of the task. Also, pairing the Jana and Pablo
tasks gave us a fair balance of tasks: two tasks in which our
conflict-resolution method completes the task goal by de-
fault (Charles and Lance), two tasks in which the Windows
method completes the task goal by default (Kent and Adria),
and two tasks in which neither method completes the goal by
default and the author has to take action (Jana and Pablo).

The six tasks can be classified by their initial configuration.
Each task’s initial configuration included a rule conflict that
fit into one of the rule-conflict structures shown in Table 1.
The tasks only cover the three table cells corresponding to
interesting rule conflict structures, i.e., those for which the
two conflict-resolution methods yield different decisions or
for which they lend themselves to different means of resolv-
ing the conflict. Specifically, the Charles and Kent tasks
present cases where the ALLOW rule’s principal is more spe-
cific than the DENY rule’s principal and the resources are
the same. The Lance and Adria tasks present 2-dimensional
conflicts, where the DENY rule’s principal is more specific,
but the ALLOW rule’s resource is more specific. The Jana
and Pablo tasks present cases where the principals are peers
of each other and the resources are the same. We describe
each task pair in more detail below.

Charles/Kent
We designed the Charles task to show the advantage a speci-
ficity conflict-resolution method has over the Windows meth-
od when ALLOW rule exceptions to a group DENY rule are
desired. The Charles task involves adding a user to a group;
the user has several ALLOW permissions on some files, the
group has DENY permissions on those files, and the goal is
to keep the user’s ALLOW permissions. The Charles task
statement presented to participants was:

Charles has just graduated, but is going to come back
to sing in the choir with his friends.

Add Charles to the Alumni group, but make sure he
can still read the same files in the Choir 1\Lyrics folder
that his good friend Carl can read.

In the initial configuration, there are rules stating that Charles
is allowed READ access to four files in the Choir 1\Lyrics
folder. These are the same files that Carl can read, so in the
final state, we want Charles to be allowed READ access to
the four files. There are rules stating that the Alumni group
is denied READ access to the same files. When Charles is

moved into the Alumni group, the group’s DENY rules will
apply to him, and under the Windows deny precedence, he
will be denied access to the files. However, under specificity
precedence, his rules are more specific than the group access
rules, so he will still be allowed to read the files. Thus, speci-
ficity precedence makes this task easier, and we expected
participants in the GS condition to perform better than GW
and WW in the Charles task.

We designed the Kent task to show a drawback our specificity-
based conflict-resolution method has when ALLOW excep-
tions to a group DENY rule are not desired. The Kent task
was structured similarly to the Charles task, but the goal was
inverted to give the advantage to the Windows conflict reso-
lution method.

The Kent task statement presented to participants was:

Kent was a terrible TA for Choir 1 so the instructor de-
moted him to the level of student. While Kent previ-
ously had permissions to read and write the attendance
and gradebook files, as a student he should no longer
have access to that information.
Remove Kent from Choir 1 TAs 2008 and add him to
Choir 1 Students 2008. For files in the Classes\Choir
1\Admin folder, make sure he only has the same per-
missions as the other Choir 1 students.

As in the Charles task, Kent inherits a DENY permission
from a group to which he is moved. This time, however,
Kent is to keep the DENY permission, so we expect partic-
ipants in the GW and WW conditions to perform better on
the Kent task.

Lance/Adria
We designed the Lance task to test the behavior of our con-
flict-resolution method in the presence of a two-dimensional
conflict when a DENY decision is desired. The Lance task
introduces a two-dimensional conflict, in which there are
conflicts in both the principals and resources. The Lance
task statement presented to participants was:

Lance was hired by the New York Philharmonic and
can no longer serve as Head TA this year.
Remove Lance from the group Head TAs 2008, but
make sure you don’t remove him from Head TAs 2007.
Then make sure he is not allowed to access any files in
the Music 101\Admin folder.

In the initial configuration, there is a rule stating that Lance
is denied READ access to the Music 101\Admin folder, and
there are rules stating that the Head TAs 2007 group is al-
lowed READ access to the Music 101\Admin\gradebook.xls
file, but that the Head TAs 2008 group is denied READ ac-
cess to the file. When Lance is removed from Head TAs
2008, a two-dimensional conflict is revealed, since the rule
applying to Lance on the Admin folder is more specific in
its principal, but the rule applying to Head TAs 2007 on the
gradebook.xls file is more specific in its resource. In the
Windows conflict-resolution method, the rule that is more

specific in the resource takes precedence, so Lance will be
allowed to read the gradebook.xls file, but in the specificity-
based conflict-resolution method, the DENY rule takes prece-
dence, so Lance will not be allowed to read the gradebook.xls
file. Since the task calls for Lance not to be allowed to access
any files in the Admin folder, our conflict-resolution method
requires less work to complete the task correctly, and we ex-
pected participants in the GS condition to perform best.

We designed the Adria task to test the behavior of our conflict-
resolution method in the presence of a two-dimensional con-
flict when an ALLOW decision is desired. Just as the Kent
task is similar to the Charles task with the inverse goal, the
Adria task is similar to the Lance task with the inverse goal.

The Adria task statement presented to participants was:

Adria, an Opera Instructor, was not getting along with
the other instructor and left the class. You need to re-
move her from the Opera Instructors group. She is still
a Music 101 instructor, though, and the Music 101 in-
structors need access to the Music 101 Lecture Notes.
Remove Adria from the Opera Instructors group. Make
sure she has the same permissions on the files in the
Music 101\Lecture Notes folder as the other Music
101 instructors.

As in the Lance task, when Adria is removed from a group,
a two-dimensional conflict involving another group is re-
vealed. However, the goal is inverted in the Adria task, so
that now, we expect the advantage to lie with the GW and
WW conditions.

Jana/Pablo
The Jana task involves a rule conflict at the group level that
must be resolved to give Jana access to a file. The Jana task
statement presented to participants was:

Jana, a Theory 101 TA, complained that when she tried
to change the Four-part Harmony handout to update the
assignment, she was denied access.
Set permissions so that Jana can read and write the
Four-part Harmony.doc file in the Theory 101\Handouts
folder.

We expect specificity precedence to enable authors to per-
form better for the Jana task compared to deny precedence.
Thus, we expected participants in the GS condition to out-
perform participants in the GW and WW conditions for the
Jana task.

The Pablo task was structured similarly to the Jana task, and
we expected better performance in the GS condition com-
pared to the GW and WW conditions. The Pablo task state-
ment presented to participants was:

Pablo, a student in Music 101, tried to download the
homework file, assignment4.pdf, but couldn’t.
Set permissions so that Pablo can read the file assign-
ment4.pdf in the Music 101\Handouts folder. Make

sure you don’t change any other students’ permissions.
(Hint: If you need to, you can add Pablo to a new group
or remove Pablo from a group he’s already in.)

As previously discussed, the Pablo task was superficially dif-
ferent from Jana in the names and numbers of principals and
resources involved in the task, but structurally the same.

Procedure
At the start of each study session, participants filled out a de-
mographic survey so that we could ensure they were students
in technical disciplines. Following the survey, our exper-
imenter read instructions explaining our teaching-assistant
scenario to participants. After reading these instructions, our
experimenter read interface training materials. For each in-
terface, training covered how to perform the following op-
erations: viewing files and folders; moving a file; viewing
group memberships; adding a user to a group; removing a
user from a group; creating a new group; checking an ac-
cess rule; checking effective permissions; creating an access
rule; and searching for a file or principal. During training,
the experimenter also explained that effective permissions
may differ from access rules because of the way rules com-
bine, but did not explain the precise workings of the conflict-
resolution methods. After these operations had been ex-
plained to participants, the experimenter walked them through
a training task. The training task gave participants prac-
tice with some of the basic operations covered during train-
ing, but did not involve a rule conflict. Participants received
the same training task in all three experimental conditions.
Training took about 10 minutes.

Participants then began completing tasks. Before each task,
the experimenter brought up the interface in a preconfigured
state tailored to each task. Task statements were then pre-
sented to participants in a Web browser on screen. Partici-
pants indicated they were done with each task by clicking
a button in the Web browser. Participants were asked to
think aloud while they worked on the tasks. Task order was
counterbalanced across participants using a pseudo-random
Latin square design to guard against ordering and sequence
effects.

RESULTS
Our results are in the form of accuracy rates for each condi-
tion and task. While we also measured times-to-task-comple-
tion, we do not present them in detail due to space con-
straints. Time-to-task-completion data resulted in few sta-
tistically significant differences between conditions and the
results that were significant corroborate the accuracy results,
so the data show that the accuracy results we present here
were not merely due to a time-accuracy tradeoff. Complete
time-to-task-completion data can be found elsewhere [17].

Accuracy rates represent the proportion of participants in
each condition who correctly completed the task. We scored
a task as correct if the participant’s final effective permis-
sions matched the task goals and did not introduce any ex-
traneous changes not called for by the task statement or oth-
erwise required to complete the task. Tasks in which the

0.00
0.20
0.40
0.60
0.80
1.00

Charles Kent Lance Adria Jana Pablo

GS GW WW

Figure 3. Accuracy results, showing proportion of participants cor-
rectly completing each task with GS, GW, and WW interfaces.

goals of the task were not met or in which the goals were
met but extraneous changes were introduced were scored as
incorrect. Accuracy results can be seen in Figure 3.

We conducted post-hoc task-by-task tests. Each of our tasks
tested a specific hypothesis about the effects the conflict-
resolution methods would have on usability, as measured by
accuracy. We tested hypotheses regarding accuracy rates by
using one-sided Fisher’s exact tests with the null hypothe-
sis that the difference in accuracy rates was zero. We used
one-sided tests since our hypotheses are directional (i.e., we
expect better performance from one condition than another).
Results of all hypothesis tests of accuracy rates can be seen
in Table 2.

In the Charles, Kent, Lance, and Adria tasks, one of the two
conflict-resolution methods yielded the goal decision by de-
fault, so had an advantage over the other conflict-resolution
method in helping participants complete tasks correctly. Thus,
for those four tasks, either our conflict-resolution method or
the Windows method had a natural advantage, and we ex-
pected the conditions using the advantaged conflict-resolution
method in each task to lead to better performance. For the
Charles and Lance tasks, in which our specificity-based con-
flict-resolution method had the advantage, the accuracy rate
for the GS condition was statistically significantly higher
than that for the GW and WW conditions, as expected. For
the Kent task, in which the Windows conflict-resolution meth-
od had the advantage, the accuracy rate for the GS condition
was statistically significantly lower than that for the GW
condition, as expected, but the result for GS compared to
WW was not statistically significant. For the Adria task, in
which the Windows method had the advantage, there was no
statistically significant difference between the GS condition
and the GW and WW conditions. This somewhat surprising
result in favor of GS is likely due to the combination of the
Grid’s presentation aspects, which allow authors to easily
notice the discrepancy between the effective policy and their
goal policy, and the ease of adding a specific rule applying to
Adria to overcome the conflict with specificity precedence.

For the Jana and Pablo tasks, both conflict-resolution meth-
ods yield a DENY decision in the presence of the conflict,
so we did not expect either to have an advantage by default.
However, we expected the specificity-based method to make
it easy to overcome the conflict by setting a specific rule
allowing Jana or Pablo to access the relevant files. As we
have explained, the Windows method makes it cumbersome
to overcome the conflict at the group level. As expected, the
GS condition led to better performance over both the GW
and WW conditions in both the Jana and Pablo tasks.

In summary, we observed GS to be statistically significantly
better than both GW and WW in the four tasks in which
GS had the default advantage or in which there was no de-
fault advantage. In the two tasks where the default advantage
went the other way, GS was statistically significantly worse
compared to GW in the Kent task, and was behind GW and
WW in both tasks, though not significantly so. The com-
parisons between GS and GW illustrate the substantial us-
ability gains that can be had just from our conflict-resolution
method; even if the Charles/Kent and Lance/Adria accuracy
rates are viewed as a wash, GS gave a gain of 78% in accu-
racy rate compared to GW for Jana and 50% for Pablo.

DISCUSSION
We discuss three aspects of our results: comparison of the
two conflict-resolution methods, broader implications for de-
signing usable security systems, and limitations of our study.

Comparing conflict-resolution methods
Our results show that the policy conflict-resolution method
underlying a file-permissions interface has a significant ef-
fect on task-completion accuracy. The precise effect of the
conflict-resolution method depends on what the task goals
are. If task goals are aligned with a conflict-resolution meth-
od, such that the method yields the desired effective policy
by default, accuracy rates are likely to be higher than if the
method requires an author to take additional action to change
the decision. In the Charles, Kent, and Lance tasks, we saw
that the method that yielded the correct effective policy by
default led to the highest accuracy rates.

No conflict-resolution method can always yield the desired
effective permissions, as we designed our inverse task pairs
(Charles/Kent, Lance/Adria) to show. However, we have ar-
gued that our specificity-based conflict-resolution method is
superior to the Windows deny-based method because, even
in a situation where specificity is not yielding the desired
effective permission, it is easy to change the effective per-
mission with a specific rule. Contrast this to the Windows
deny-precedence method, which forces an author in some
conflict situations to remove a user from a group or change
rules applying to the whole group. The Adria task shows a
situation in which, although our specificity-based conflict-
resolution method does not yield the desired decision by de-
fault, getting the task right is a simple matter of adding a
rule more specific than those in conflict. The Pablo and Jana
tasks further illustrate the advantage that a specificity-based
conflict-resolution method has over a deny-based method in
overcoming rule conflicts. Thus, our argument that speci-
ficity is more usable when the author is required to take ac-
tion to fix a rule conflict is borne out by our empirical results.

While our empirical results are based on holding only one
user interface, the Expandable Grid, constant across con-
ditions, we note that a different interface could not have
negated the difference in usability between the two conflict-
resolution methods. No user interface can overcome the ad-
vantage of making the right decision by default; doing so
would require making it easier for the author to do some-
thing than to do nothing. And no user interface can make it

Table 2. Summary of post-hoc statistical tests for significant differences in accuracy rate for Grid with our specificity-based conflict-resolution method
(aGS), Grid with Windows conflict-resolution method (aGW), and Windows (aWW). For each task, the table shows accuracy rates for the three
interfaces, hypotheses tested, and p-values from one-sided Fisher’s exact tests; p-values at or below the α = 0.05 rejection threshold are shaded and
highlighted in bold, indicating significant tests.

Task aGS aGW aWW GS vs. GW hy-
pothesis

p-value GS vs. WW hy-
pothesis

p-value

Charles 0.56 0.06 0.00 aGS > aGW 0.001 aGS > aWW < 0.001

Kent 0.50 0.88 0.78 aGS < aGW 0.014 aGS < aWW 0.082

Lance 0.94 0.39 0.00 aGS > aGW < 0.001 aGS > aWW < 0.001

Adria 0.61 0.83 0.39 aGS < aGW 0.13 aGS < aWW 0.95

Jana 0.89 0.11 0.44 aGS > aGW < 0.001 aGS > aWW 0.006

Pablo 0.72 0.22 0.39 aGS > aGW 0.003 aGS > aWW 0.046

possible to do the Jana and Pablo tasks under the Windows
semantics without making a group-level change.

One concern with adopting a specificity-based conflict-reso-
lution method is that it introduces a risk that, when setting
a group-level DENY rule, the DENY rule will not apply to
members of the group who already have ALLOW rules ap-
plying to them. Specifically, in a situation like the one in
the Kent task, where a group-level DENY rule is meant to
override any user-level ALLOW rule exceptions, specificity
does not give the desired decision by default. If a policy au-
thor fails to notice the undesired ALLOW exceptions to the
DENY rule, unauthorized access may be allowed. However,
the Expandable Grid interface can help mitigate this issue by
making it much easier for authors to see anomalies in their
policies [18]. Thus, if using such an interface, the usabil-
ity gains from specificity are likely worth this slight security
risk for many applications. Moreover, an unusable policy
model may itself be a security risk, as humans frustrated that
they are unable to implement the policies they want may set
policies that are more liberal than necessary [2], or circum-
vent access-control systems altogether [11].

Implications for designing security systems
The substantial differences in accuracy rates due to relatively
small changes to the access-control model in our study are
striking. Differences in accuracy rates between the GS and
GW conditions were 50%, 38%, 55%, 22%, 78%, and 50%
for our six tasks. In five of six cases, these differences were
statistically significant. Since we held interface constant be-
tween GS and GW and only varied conflict-resolution method,
these substantial differences are due only to changes in the
underlying model. In real-world security system design, these
kinds of details of underlying models are usually determined
by security experts, who may not consider their effects on
usability. Our results suggest they should, since the effects
can be large, and since, as we have just pointed out, an un-
usable system that users circumvent is itself a security risk.
Other researchers have called for “user-centered security,” in
which usability is a prime consideration during the design of
underlying models and in which security and usability ex-
perts work side-by-side [1, 13, 24]. Our results lend empiri-
cal evidence to back up these calls for user-centered security.

Limitations
Some limitations of our study are worth noting. Our results
tell us that the success of any conflict-resolution method de-
pends largely on the requirements of the particular tasks that
an author performs. Since we do not have data on the fre-
quency with which particular tasks are performed, we cannot
say conclusively that a specificity-based conflict-resolution
method is always superior to deny precedence. However,
our results showed that over the six tasks in our balanced set
(balanced to be fair in alternating the advantage they gave
to the two conflict-resolution methods) the specificity-based
method was superior. We attribute its superior performance
largely to the ease with which it enables authors to fix situa-
tions in which its default behavior is not what is desired.

Our study created scenarios that participants could complete
within a few minutes in our lab. We were not able to recre-
ate certain real-life scenarios in which policy-authoring may
happen periodically over long periods of time. Particularly
difficult to simulate in the lab are scenarios in which an au-
thor must remember the intention behind a setting that may
have been made weeks or months before.

RELATED WORK
There is an extensive body of work describing formal access-
control models and languages. The authors of these models
and languages necessarily describe a semantics and usually
address conflict resolution. The conflict-resolution methods
we have discussed here have been covered in the access-
control literature (e.g., [5, 7, 10]), but rarely from a usabil-
ity perspective. Most of these works, as well as others in
the general access-control model literature, are concerned
with describing the formal aspects of their models and prov-
ing theoretical properties about them. A few of these works
address ease of policy-authoring under their semantics, but
none that we are aware of actually ran user studies to evalu-
ate their semantics empirically as we have.

Others have noted that the underlying model may affect us-
ability [22]. However, past work in policy-authoring usabil-
ity has mostly focused on interface design or policy visu-
alization [3, 4, 9, 14, 18, 19], rather than how the under-
lying access-control model (of which the conflict-resolution
method is a part) could be best designed for usability. Papers
by Fisler and Krishnamurthi [6] and by Kapadia et al. [12]

are exceptions that do address usability through underlying
models. Fisler and Krishnamurthi introduce an access con-
trol model that captures information about the broader orga-
nizational context in which an access-control policy exists
and uses this information to sanity check the actual policy
itself. Kapadia et al. discuss a system that enables users to
debug denied access errors.

CONCLUSION
We have argued that significant usability improvements can
be had from an access-control conflict-resolution method
based on specificity precedence compared to a method based
on deny precedence. We implemented a specificity-based
conflict-resolution method in a simulated Windows file sys-
tem and ran the Expandable Grid interface on top of it. Our
user study showed that the specificity-based method pro-
vides substantial usability gains for tasks that require a pol-
icy author to make changes to a default decision issued by
the conflict-resolution method. That is, when the conflict-
resolution method gets the decision wrong, specificity-
precedence helps the author fix it.

More generally, our results illustrate the impact that underly-
ing system models can have on usability. Our results strength-
en the argument for user-centered security, in which usabil-
ity is a prime consideration during the formative stages of
security system design, and in which security and usability
experts work side-by-side to ensure a security system that
will work as intended when humans interact with it.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants CNS-0756998
and CNS-0627513, and by CyLab at Carnegie Mellon under
grants DAAD19-02-1-0389 and W911NF-09-1-0273 from
the Army Research Office.

REFERENCES
1. A. Adams and M. A. Sasse. Users are not the enemy.

Communications of the ACM, 42(12):41–46, December 1999.
2. L. Bauer, L. F. Cranor, R. W. Reeder, M. K. Reiter, and

K. Vaniea. A user study of policy creation in a flexible
access-control system. ACM SIGCHI Conference on Human
Factors in Computing Systems, pages 543–552, April 2008.

3. S. Brostoff, M. A. Sasse, D. Chadwick, J. Cunningham,
U. Mbanaso, and S. Otenko. ‘R-What?’ Development of a
role-based access control policy-writing tool for e-Scientists.
Software Practice & Experience, 35(9):835–856, June 2005.

4. X. Cao and L. Iverson. Intentional access management:
Making access control usable for end-users. 2nd Symposium
on Usable Privacy and Security, pages 20–31, 2006.

5. D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Specifying
and reasoning about dynamic access-control policies. 3rd
International Joint Conference on Automated Reasoning,
Lecture Notes in Computer Science, Vol. 4130, pages
632–646, August 2006.

6. K. Fisler and S. Krishnamurthi. A model of triangulating
environments for policy authoring. 15th ACM Symp. on
Access Control Models and Technologies, p. 3–12, June 2010.

7. I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
secure environment for untrusted helper applications:
Confining the wily hacker. 6th USENIX Security Symposium,
July 1996.

8. N. S. Good and A. Krekelberg. Usability and privacy: a study
of Kazaa P2P file-sharing. ACM SIGCHI Conf. on Human
Factors in Computing Systems, pages 137–144, April 2003.

9. P. Inglesant, M. A. Sasse, D. Chadwick, and L. L. Shi.
Expressions of expertness: The virtuous circle of natural
language for access control policy specification. 2008
Symposium on Usable Privacy and Security, July 2008.

10. S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. A
unified framework for enforcing multiple access control
policies. 1997 ACM SIGMOD International Conference on
Management of Data, pages 474–485, 1997.

11. M. Johnson, S. M. Bellovin, R. W. Reeder, and S. E.
Schechter. Laissez-faire file sharing: Access control designed
for individuals at the endpoints. 2009 New Security
Paradigms Workshop, pages 1–10, 2009.

12. A. Kapadia, G. Sampemane, and R. H. Campbell. KNOW
why your access was denied: Regulating feedback for usable
security. 11th ACM Conference on Computer and
Communications Security, pages 52–61, 2004.

13. C.-M. Karat, C. Brodie, and J. Karat. Usability design and
evaluation for privacy and security solutions. In L. F. Cranor
and S. Garfinkel, editors, Security and Usability, chapter 4,
pages 47–74. O’Reilly, Sebastopol, CA, 2005.

14. C.-M. Karat, J. Karat, C. Brodie, and J. Feng. Evaluating
interfaces for privacy policy rule authoring. ACM SIGCHI
Conference on Human Factors in Computing Systems, pages
83–92, 2006.

15. B. W. Lampson. Protection. Operating Systems Review,
8(1):18–24, January 1974.

16. R. A. Maxion and R. W. Reeder. Improving user-interface
dependability through mitigation of human error.
International Journal of Human-Computer Studies,
63(1-2):25–50, July 2005.

17. R. W. Reeder. Expandable Grids: A user interface
visualization technique and a policy semantics to support fast,
accurate security and privacy policy authoring. PhD thesis,
Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA, May 2008. Available as technical report
number CMU-CS-08-143.

18. R. W. Reeder, L. Bauer, L. F. Cranor, M. K. Reiter, K. Bacon,
K. How, and H. Strong. Expandable grids for visualizing and
authoring computer security policies. ACM SIGCHI
Conference on Human Factors in Computing Systems, pages
1473–1482, April 2008.

19. J. Rode, C. Johansson, P. DiGioia, R. S. Filho, K. Nies, D. H.
Nguyen, J. Ren, P. Dourish, and D. Redmiles. Seeing further:
Extending visualization as a basis for usable security. 2nd
Symp. on Usable Privacy and Security, pages 145–155, 2006.

20. B. Shneiderman. Direct manipulation: A step beyond
programming languages. Computer, 16(8):57–69, August
1983.

21. U.S. Senate Sergeant at Arms. Report on the investigation into
improper access to the Senate Judiciary Committees computer
system. Available at
http://judiciary.senate.gov/testimony.cfm?id=1085&wit id=2514,
March 2004.

22. T. Whalen, D. Smetters, and E. F. Churchill. User experiences
with sharing and access control. Conference on Human
Factors in Computing Systems Extended Abstracts, pages
1517–1522, April 2006.

23. M. E. Zurko, R. Simon, and T. Sanfilippo. A user-centered,
modular authorization service built on an RBAC foundation.
1999 IEEE Symposium on Security and Privacy, pages 57–71,
May 1999.

24. M. E. Zurko and R. T. Simon. User-centered security.
Workshop on New Security Paradigms, pages 27–33, Lake
Arrowhead, CA, September 1996. Available at
http://www.memesoft.com/adage/.

