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Abstract

We present a new technique for generating a formal proof that an access request satisfies access-
control policy, for use in logic-based access-control frameworks. Our approach is tailored to settings
where credentials needed to complete a proof might need to be obtained from, or reactively created by,
distant components in a distributed system. In such contexts, our approach substantially improves upon
previous proposals in both computation and communication costs, and better guides users to create the
most appropriate credentials in those cases where needed credentials do not yet exist. At the same time,
our strategy offers strictly superior proving ability, in the sense that it finds a proof in every case that
previous approaches would (and more). We detail our method and evaluate an implementation of it using
both policies in active use in an access-control testbed at our institution and larger policies indicative of
a widespread deployment.

1 Introduction

Much work has given credence to the notion that formal reasoning can be used to buttress the assurance
one has in an access-control system. While early work in this vein modeled access-control systems us-
ing formal logics (e.g., [11, 25]), recent work has imported logic into the system as a means to implement
access control (e.g., [5]). In these systems, the resource monitor evaluating an access request requires a
proof, in formal logic, that the access satisfies access-control policy. In such a proof, digitally signed cre-
dentials are used to instantiate formulas of the logic (e.g., “KAlice signed delegate(Alice,Bob, resource)”
or “KCA signed KAlice speaksfor KCA.Alice”), and then inference rules are used to derive a proof that a
required policy is satisfied (e.g., “Manager says open(resource)”). The resource monitor, then, need only
validate that each request is accompanied by a valid proof of the required policy.

Because the resource monitor accepts any valid proof of the required policy, this framework offers
potentially a high degree of flexibility in how proofs are constructed. This flexibility, however, is not without
its costs. First, it is essential that the logic is sound and free from unintended consequences, giving rise to a
rich literature in designing appropriate authorization logics (e.g., [11, 27, 19, 16]). Second, and of primary
concern in this paper, it must be possible to efficiently find proofs for accesses that should be allowed. Rather
than devising a proving strategy customized to each application, we would prefer to develop a general proof-
building strategy that is driven by the logic itself and that is effective in a wide range of applications.

∗This work was supported in part by NSF grant 0433540, grant DAAD19-02-1-0389 from the Army Research Office, and the
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†Carnegie Mellon University
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1



In this paper we focus on systems where needed credentials are distributed among different compo-
nents, if they exist at all, and may be created at distant components reactively and with human intervention.
Such systems give rise to new requirements for credential-creation and proof-construction algorithms. To
address these requirements, we combine a number of new and existing techniques into a proof-generation
strategy that is qualitatively different from those proposed by previous works. In comparison to these works
(notably [4]), we show that our strategy offers dramatic improvements in the efficiency of proof construc-
tion in practice, consequently making such systems significantly more useable. Moreover, our strategy will
find proofs whenever previous algorithms would (and sometimes even when they would not). Our method
builds from three key principles. First, our method strategically delays pursuing “expensive” subgoals until,
through further progress in the proving process, it is clear that these subgoals would be helpful to prove. Sec-
ond, our method precomputes delegation chains between principles in a way that can significantly optimize
the proving process on the critical path of an access. Third, our method eliminates the need to hand-craft
tactics, a fragile and time-intensive process, to efficiently guide the proof search. Instead, it utilizes a new,
systematic approach to generating tactics from the inference rules of the logic.

The technique we report here is motivated by an ongoing deployment at our institution of a testbed en-
vironment where proof-based access control is used to control access to both physical resources (e.g., door
access) and information resources (e.g., computer logins). The system has been deployed for over a year,
guards access to about 35 resources spanning two floors of our office building, and is used daily by over 35
users. In this deployment, smartphones are used as the vehicle for constructing proofs and soliciting consent
from users for the creation of new credentials, and the cellular network is the means by which these smart-
phones communicate to retrieve needed proofs of subgoals. In such an environment, both computation and
communication have high latency, and so limiting use of these resources is essential to offering reasonable
response times to users. And, for the sake of usability, it is essential that we involve users in the proof gener-
ation process (i.e., to create new credentials) infrequently and with as much guidance as possible. We have
developed the technique we report here with these goals in mind, and our deployment suggests that it offers
acceptable performance for the policies with which we have experimented and is a drastic improvement over
previous approaches. All of the examples used in this paper are actual policies drawn from the deployment.
We evaluate the scalability of our algorithm on larger, synthetically generated policies in Section 7.2 and
show that the quantity of precomputed state remains reasonable and the performance advantage of our ap-
proach remains or increases as the policy grows. Our approach has applications beyond the particular setting
in which we describe it; we briefly discuss one such application in Section 8.

The contributions of this paper are to: (1) identify the requirements of a proving algorithm in a dis-
tributed access-control system with dynamic credential creation (Section 2); (2) propose mechanisms for
precomputing delegation chains (Section 5) and systematically generating tactics (Section 6.2); (3) describe
a technique for utilizing these pre-computed results to find proofs in dramatically less time than previous
approaches (Section 6); and (4) evaluate our technique on a collection of policies representative of those
used in practice (Section 7.1) and those indicative of a larger deployment (Section 7.2). In Section 8, we
discuss the use of our techniques in the context of additional logics, systems, and applications.

2 Goals and Contributions

As discussed in Section 1, we will describe new techniques for generating proofs in an authorization logic
that an access request is consistent with access-control policy. It will be far easier to discuss our approach
in the context of a concrete authorization logic, and for this purpose we utilize the same sample logic as
we used in previous work [4], which is reproduced in Figure 1. However, our techniques are not specific
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to this logic, or even necessarily to a logic-based system; rather, they can be adapted to a wide range of
authorization systems provided that they build upon a similar notion of delegation, as discussed in Section 8.

φ ::= s signed φ
′ | p says φ

′

φ
′ ::= open (s) | p speaksfor p | delegate(p, p, s)

(s ranges over strings and p over principals)

pubkey signed F

key(pubkey) says F (SAYS-I)

A says (A.S says F )

A.S says F (SAYS-LN)

A says (B speaksfor A) B says F

A says F (SPEAKSFOR-E)

A says (B speaksfor A.S) B says F

A.S says F (SPEAKSFOR-E2)

A says (delegate(A,B,U )) B says (open(U, N))

A says (open(U, N))
(DELEGATE-E)

Figure 1: A sample access-control logic [4]

If pubkey is a particular public key, then
key(pubkey) is the principal that corresponds to that
key. If Alice is a principal, we write Alice.secretary

to denote the principal whom Alice calls “secretary.”
The formulas of our logic describe principals’ beliefs.
If Alice believes that the formula F is true, we write
Alice says F . To indicate that she believes a formula
F is true, a principal signs it with her private key—
the resulting sequence of bits will be represented by
the formula pubkey signed F , which can be trans-
formed into a belief (key(pubkey) says F ) using the
SAYS-I inference rule. To describe a resource that a
client wants to access, we use the open constructor.
A principal believes the formula open(resource) if
she thinks that it is OK to access resource .1 Delega-
tion is described with the speaksfor and delegate

predicates. The formula Alice speaksfor Bob in-
dicates that Bob has delegated to Alice his author-
ity to make access-control decisions about any re-
source. delegate(Bob,Alice, resource) transfers to
Alice only the authority to access the resource called resource .

2.1 Requirements

To motivate our requirements, we use as an example a simple policy in use on a daily basis in our system.
This policy is chosen for illustrative purposes; the performance advantage of our technique actually widens
as the policy becomes more complicated (see Section 7.2). All the resources in our example are owned by
our academic department, and so to access a resource (resource) one must prove that the department has
authorized the access (Dept says open(resource)).

Alice is the manager in charge of a machine room with three entrances: door1, door2, and door3.
To place her in charge, the department has created credentials giving Alice access to each door, e.g.,
KDept signed delegate(Dept, Alice, door1). Alice’s responsibilities include deciding who else may ac-
cess the machine room. Instead of individually delegating access to each door, Alice has organized her
security policy by (1) creating a group Alice.machine-room; (2) giving all members of that group access
to each door (e.g., KAlice signed delegate(Alice,Alice.machine-room, door1)); and, finally, (3) making
individuals like Bob members of the group (KAlice signed (Bob speaksfor Alice.machine-room)).

Suppose that Charlie, who currently does not have access to the machine room, wishes to open one of the
machine-room doors. When his smartphone contacts the door, it is told to prove Dept says open(door1).
The proof is likely to require credentials created by the department, by Alice, and perhaps also by Bob, who
may be willing to redelegate the authority he received from Alice.

Previous approaches to distributed proof generation (notably [4] and [31]) did not attempt to address
three requirements that are crucial in practice. Each requirement may appear to be a trivial extension of

1open takes a nonce as a second parameter, which we omit here for simplicity.
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some previously studied proof-generation algorithm. However, straightforward implementation attempts
suffer from problems that lead to greater inefficiency than can be tolerated in practice, as will be detailed
below.

Credential creation Charlie will not be able to access door1 unless Alice, Bob, or the department cre-
ates a credential to make that possible. The proof-generation algorithm should intelligently guide users
to create the “right” credential, e.g., KAlice signed ( Charlie speaksfor Alice.machine-room), based on
other credentials that already exist. This increases the computation required, as the prover must additionally
investigate branches of reasoning that involve credentials that have not yet been created.

Exposing choice points When it is possible to make progress on a proof in a number of ways (i.e., by
creating different credentials or by asking different principals for help), the choice points should be exposed
to the user instead of being followed automatically. Exposing the choice points to the user makes it possible
both to generate proofs more efficiently by taking advantage of the user’s knowledge (e.g., Charlie might
know that Bob is likely to help but Alice isn’t) and to avoid undesired proving paths (e.g., bothering Alice
at 3AM with a request to create credentials, when she has requested she not be). This increase in overall
efficiency comes at a cost of increased local computation, as the prover must investigate all possible choice
points prior to asking the user.

Local proving Previous work showed that proof generation in distributed environments was feasible
under the assumption that each principal attempted to prove only the formulas pertaining to her own beliefs
(e.g., Charlie would attempt to prove formulas like Charlie says F , but would immediately ask Bob for help
if he had to prove Bob says G) [4]. In our example, if Charlie asks Alice for help, Alice is able to create
sufficient credentials to prove Dept says open(door1), even though this proof involves reasoning about
the department head’s beliefs. Avoiding a request to the department head in this case improves the overall
efficiency of proof generation, but in general requires Alice to try to prove all goals for which she would
normally ask for help, again increasing the amount of local computation.

The increase in computation imposed by each requirement may seem reasonable, but when implemented
as a straightforward extension of previous work, Alice’s prover running on a Nokia N70 smartphone will
take over 5 minutes to determine the set of possible ways in which she can help Charlie gain access. Using
the technique described in this paper, Alice is able to find the most common options (see Section 6.2) in 2
seconds, and is able to find a provably complete set of options in well less than a minute.

2.2 Insights

We address the requirements outlined in Section 2.1 with a new distributed proving strategy that is both
efficient in practice and that sacrifices no proving ability relative to prior approaches. The insights embodied
in our new strategy are threefold and we describe them here with the help of the example from Section 2.1.

Minimizing expensive proof steps In an effort to prove Dept says open(door1), suppose Charlie’s
prover directs a request for help to Alice. Alice’s prover might decompose the goal Dept says open(door1)
in various ways, some that would require the consent of the user Alice to create a new credential (e.g.,
Alice says Charlie speaksfor Alice.machine-room) and others that would involve making a remote query
(e.g., to Dept, since this is Dept’s belief). We have found that naively pursuing such options inline, i.e., when
the prover first encounters them, is not reasonable in a practical implementation, as the former requires too
much user interaction and the latter induces too much network communication and remote proving.

We employ a delayed proof procedure that vastly improves on these alternatives for the policies we have
experimented with in practice. Roughly speaking, this procedure strategically bypasses formulas that are
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the most expensive to pursue, i.e., requiring either a remote query or the local user consenting to signing the
formula directly. Each such formula is revisited only if subsequent steps in the proving process show that
proving it would, in fact, be useful to completing the overall proof. In this way, the most expensive steps
in the proof process are skipped until only those that would actually be useful are determined. These useful
steps may be collected and presented to the user to aid in the decision-making process. This is done by our
delayed distributed proving algorithm, which is described in Section 6.1.

Precomputing delegation chains A second insight is to locally precompute and cache delegation chains
using two approaches: the well-studied forward chaining algorithm [33] and path compression, which we
introduce here. Unlike backward chaining, which recursively decomposes goals into subgoals, these tech-
niques work forward from a prover’s available credentials (its knowledge base) to derive both facts and
metalogical implications of the form “if we prove Charlie says F , then we can prove David says F ”. By
computing these implications off the critical path, numerous lengthy branches can be avoided during back-
ward chaining. While these algorithms can theoretically produce a knowledge base whose size is expo-
nential in the number of credentials known, our evaluation indicates that in practice most credentials do not
combine, and that the size of the knowledge base increases roughly linearly with the number of credentials
(see Section 7.2). As we discuss in Section 6.2, the chief challenge in using precomputed results is to effec-
tively integrate them in an exhaustive time-of-access proof search that involves hypothetical credentials.

If any credential should expire or be revoked, any knowledge derived from that credential will be re-
moved from the knowledge base. Each element in the knowledge base is accompanied by an explicit deriva-
tion (i.e., a proof) of the element from credentials. Our implementation searches the knowledge base for any
elements that are derived from expired or revoked credentials and removes them. Our technique is agnostic
to the underlying revocation mechanism.

Systematic tactic generation Another set of difficulties in constructing proofs is related to constructing
the tactics that guide a backward-chaining prover in how it decomposes a goal into subgoals. One approach
to constructing tactics is simply to use the inference rules of the logic as tactics. With a depth-limiter to
ensure termination, this approach ensures that all possible proofs up to a certain size will be found, but
is typically too inefficient for use on the critical path of an access because it may enumerate all possible
proof shapes. A more efficient construction is to hand-craft a set of tactics by using multiple inference rules
per tactic to create a more specific set of tactics [15]. The tactics tend to be designed to look for certain
types of proofs at the expense of completeness. Additionally, the tactics are tedious to construct, and do
not lend themselves to formal analysis. While faster than inference rules, the hand-crafted tactics can still
be inefficient, and, more importantly, often suffer loss of proving ability when the policy grows larger or
deviates from the ones that inspired the tactics.

A third insight of the approach we describe here is a new, systematic approach for generating tactics
from inference rules. This contribution is enabled by the forward chaining and path compression algorithms
mentioned above. In particular, since our prover can rely on the fact that all delegation chains have been
precomputed, its tactics need not attempt to derive the delegation chains directly from credentials when
generating a proof of access. This reduces the difficulty of designing tactics. In our approach, an inference
rule having to do with delegation gives rise to two tactics: one whose chief purpose is to look up previously
computed delegation chains, and another that identifies the manner in which previously computed delegation
chains may be extended by the creation of further credentials. All other inference rules are used directly as
tactics.
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3 Proposed Approach

The prover operates over a knowledge base that consists of tactics, locally known credentials, and facts that
can be derived from these credentials. The proving strategy we propose consists of three parts. First, we
use the existing technique of forward chaining to extend the local knowledge base with all facts that it can
derive from existing knowledge (Section 4). Second, a path-compression algorithm (which we introduce in
Section 5) computes delegation chains that can be derived from the local knowledge base but that cannot
be derived through forward chaining. Third, a backward-chaining prover uses our systematically generated
tactics to take advantage of the knowledge generated by the first two steps to efficiently compute proofs of
a particular goal (e.g., Dept says open(door1)) (Section 6).

The splitting of the proving process into distinct pieces is motivated by the observation that if Charlie
is trying to access door1, he is interested in minimizing the time between the moment he indicates his
intention to access door1 and the time he is able to enter. Any part of the proving process that takes place
before Charlie attempts to access door1 is effectively invisible to him. By completely precomputing certain
types of knowledge, the backward-chaining prover can avoid some costly branches of investigation, thus
reducing the time the user spends waiting.

4 Forward Chaining

Forward chaining (FC) is a well-studied proof-search technique in which all known ground facts (true for-
mulas that do not contain free variables) are exhaustively combined using inference rules until either a proof
of the formula contained in the query is found, or the algorithm reaches a fixed point from which no further
inferences can be made. We use a variant of the algorithm known as incremental forward chaining [33] in
which state is preserved across queries, allowing the incremental addition of a single fact to the knowledge
base. The property we desire from FC is completeness—that it finds a proof of every formula for which a
proof can be found from the credentials in the knowledge base (KB ). More formally:

Theorem 1 After each credential f ∈ KB has been incrementally added via FC, for any p1 . . . pn ∈ KB ,
if (p1 ∧ . . . ∧ pn) ⊃ q then q ∈ KB .

Forward chaining has been shown to be complete for Datalog knowledge bases, which consist of definite
clauses without function symbols [33]. Many access-control logics are a subset of, or can be translated into,
Datalog (e.g., [21, 27]). Our sample security logic is not a subset of Datalog because it contains function
symbols, but we proceed to show that in certain cases, such as ours, FC is complete for knowledge bases
that contain function symbols. The initial knowledge base may be divided into definite clauses that have
premises, and those that do not. We refer to these as rules and credentials, respectively. A fact is any formula
for which a proof exists. A term is either a constant, a variable, or a function applied to terms. A ground
term is a term that does not contain a variable. A function symbol, such as the successor function s() that
iterates natural numbers, maps terms to terms. Function symbols present a problem in that they may be
used to create infinitely many ground terms (e.g., as with the successor function), which in turn may cause
FC to construct an infinite number of ground facts. However, some knowledge bases may contain function
symbols yet lack the proper rules to construct an infinite number of terms.

Our sample security logic is one such knowledge base. The logic makes use of two functions: key and
dot (.). The single inference rule that applies key is only able to match its premise against a credential.
As a result, key may be applied only once per credential. Dot is used to specify nested names, for which
the depth of nesting is not constrained. However, no inference rule has a conclusion with a nested name of
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depth greater than the depth of any name mentioned in one of its premises. Therefore, the deepest nested
name possible for a given KB is the deepest name mentioned explicitly in a credential.

Completeness of forward chaining can be proven by first showing that there are a constant number of
ground terms, which implies that the algorithm will terminate. By analyzing the structure of the algorithm,
it can be shown that when the algorithm terminates, forward chaining has inferred all possible facts. In the
class of knowledge bases described above, there is a finite number of constants to which a finite number of
functions can be applied a finite number of times. This implies that the number of possible ground terms
is also finite. From this point, the proof of completeness is analogous to the one presented by Russell and
Norvig [33].

5 Path Compression

A path is a delegation chain between two principals A and B such that a proof of B says F implies that a
proof of A says F can be found. Some paths are represented directly in the logic (e.g., B speaksfor A).
Other paths, such as the path between A and C that results from the credentials KA signed (B speaksfor A)
and KB signed (C speaksfor B), cannot be expressed directly—they are metalogical constructs, and
cannot be computed by FC. More formally, we define a path as follows:

Definition 1 A path (A says F,B says F ) is a set of credentials c1, . . . , cn and a proof P of (c1, . . . , cn,

A says F ) ⊃ B says F .

For example, the credential KAlice signed Bob speaksfor Alice will produce the path (Bob says F,

Alice says F ), where F is an unbound variable. Now, for any concrete formula g, if Bob says g is true, we
can conclude Alice says g. If Bob issues the credential KBob signed delegate(Bob,Charlie, resource),
then we can construct the path (Charlie says open(resource), Bob says open(resource)). Since the con-
clusion of the second path unifies with the premise of the first, we can combine them to construct the path
(Charlie says open(resource),Alice says open(resource)). Unlike the two credentials above, some dele-
gation credentials represent a meaningful path only if another path already exists. For example, Alice could
delegate authority to Bob on behalf of Charlie (e.g., KAlice signed delegate(Charlie,Bob, resource)).
This credential by itself is meaningless because Alice lacks the authority to speak on Charlie’s behalf. We
say that this credential depends on the existence of a path from Alice to Charlie, because this path would
give Alice the authority to speak on Charlie’s behalf. Consequently, we call such credentials dependent, and
others independent.

Algorithm Our path compression algorithm, shown in Figure 2, is divided into two subroutines: PC and
add-path. The objective of PC is to determine if a given credential represents a meaningful path, and, if so,
add it to the set of known paths by invoking add-path. add-path is responsible for constructing all other
possible paths using this new path, and for adding all new paths to the knowledge base. The subroutine
subst performs a free-variable substitution and unify returns the most general substitution (if one exists)
that, when applied to both parameters, produces equivalent formulas.

PC ignores any credential that does not contain a delegation statement (Line 3 of Figure 2). If a
new credential does not depend on another path, or depends on a path that exists, it will be passed to
add-path (Line 9). If the credential depends on a path that does not exist, the credential is instead stored
in incompletePaths for later use (Lines 5–7). Whenever a new path is added, PC must check if any of the
credentials in incompletePaths are now meaningful (Lines 10–12), and, if so, covert them to paths and add
the result to the knowledge base (Lines 13–14).
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0 global set paths /* All known delegation chains */
1 global set incompletePaths /* All known incomplete chains */

2 PC(credential f )
3 if (credToPath(f) = ⊥), return /* If not a delegation, do nothing. */
4 (x, y)← depends-on(f) /* If input is a third-person
5 if (((x, y) 6= ⊥) ∧ ¬((x, y) ∈ paths)) delegation, add it to incompletePaths .*/
6 incompletePaths ← incompletePaths ∪ (f, (x, y))
7 return

8 (p, q)← credToPath(f) /* Convert input credential into a path. */
9 add-path((p, q))

10 foreach (f ′, (x′, y′)) ∈ incompletePaths /* Check if new paths make any previously
11 foreach (p′′, q′′) ∈ paths encountered third-person credentials
12 if((θ← unify((x′, y′), (p′′, q′′))) 6= ⊥) useful. */
13 (p′, q′)← credToPath(f ′)
14 add-path((subst(θ, p′), subst(θ, q′)))

15 add-path(path (p, q))
16 local set newPaths = {}
17 paths ← union((p, q), paths) /* Add the new path to set of paths. */
18 newPaths ← union((p, q), newPaths)

19 foreach (p′, q′) ∈ paths

20 if((θ← unify(q, p′)) 6= ⊥) /* Try to prepend new path to
21 c← (subst(θ, p), subst(θ, q′)) all previous paths. */
22 paths ← union(c, paths)
23 newPaths ← union(c, paths)

24 foreach (p′, q′) ∈ paths

25 foreach (p′′, q′′) ∈ newPaths /* Try to append all new paths
26 if((θ← unify(q′, p′′)) 6= ⊥) to all previous paths. */
27 c← (subst(θ, p′), subst(θ, q′′))
28 paths ← union(c, paths)

Figure 2: PC, an incremental path-compression algorithm

After adding the new path to the global set of paths (Line 17), add-path finds the already-computed
paths that can be appended to the new path, appends them, and adds the resulting paths to the global set
(Lines 19–23). Next, add-path finds the existing paths that can be prepended to the paths created in the first
step, prepends them, and saves the resulting paths (Lines 24–28). To prevent cyclic paths from being saved,
the union subroutine adds a path only if the path does not represent a cycle. That is, union((p, q), S) returns
S if unify(p, q) 6= ⊥, and S ∪ {(p, q)} otherwise.

5.1 Completeness of PC

The property we desire of PC is that it constructs all possible paths that are derivable from the credentials it
has been given as input. We state this formally below; the proof is in Appendix A.
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Theorem 2 If PC has completed on KB , then for any A,B such that A 6= B, if for some F (B says F ⊃
A says F ) in the context of KB , then (B says F,A says F ) ∈ KB .

Informally: We first show that add-path will combine all paths that can be combined—that is, for any
paths (p, q) and (p′, q′) if q unifies with p′ then the path (p, q′) will be added. We then show that for all
credentials that represent a path, add-path is immediately invoked for independent credentials (Line 9),
and all credentials that depend on the existence of another path are passed to add-path whenever that path
becomes known (Lines 10–14).

6 Backward Chaining

Backward-chaining provers are composed of tactics that describe how formulas might be proved and a
backward-chaining engine that uses tactics to prove a particular formula. The backward-chaining part of
our technique must perform two novel tasks. First, the backward-chaining engine needs to expose choice
points to the user. At each such point the user can select, e.g., which of several local credentials to create,
or which of several principals to ask for help. Second, we want to craft the tactics to take advantage of
facts precomputed through forward chaining and path compression to achieve greater efficiency and better
coverage of the proof space than previous approaches.

6.1 Delayed Backward Chaining

While trying to generate a proof, the prover may investigate subgoals for which user interaction is necessary,
e.g., to create a new credential or to determine the appropriate remote party to ask for help. We call these
subgoals choice subgoals, since they will not be investigated unless the user explicitly chooses to do so. The
distributed theorem-proving approach of our previous work [4] attempted to pursue each choice subgoal as
it was discovered, thus restricting user interaction to a series of yes or no questions. Our insight here is to
pursue a choice subgoal only after all other choice subgoals have been identified, thus delaying the proving
of all choice subgoals until input can be solicited from the user. This affords the user the opportunity to
guide the prover by selecting the choice subgoal that is most appropriate to pursue first.

Converting the algorithm from previous work to the delayed strategy is straightforward. Briefly, the
delayed algorithm operates by creating a placeholder proof whenever it encounters a choice subgoal. The
algorithm then backtracks and attempts to find alternate solutions, returning if it discovers a proof that does
not involve any choice subgoals. If no such proof is found, the algorithm will present the list of placeholder
proofs to the user, who can decide which one is most appropriate to pursue first. As an optimization,
heuristics may be employed to sort or prune this list. As another optimization, the prover could determine
whether a choice subgoal is worth pursing by attempting to complete the remainder of the proof before
interacting with the user. This algorithm will identify a choice subgoal for every remote request made by
previous approaches, and will additionally identify a choice subgoal for every locally creatable credential
such that the creation of the credential would allow the completion of the proof from local knowledge.

We present our delayed distributed backward chaining algorithm (bc-askD, shown in Figure 3) as a mod-
ification to the distributed backward chaining algorithm of our previous work [4]. For ease of presentation,
bc-askD does not show additional parameters necessary to construct a proof term. In practice, the proof is
constructed in parallel with the substitution that is returned by bc-askD.

When we identify a choice subgoal, we construct a marker to store the parameters necessary to make the
remote request. A marker differs from a choice subgoal in that a choice subgoal is a formula, while a marker
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has the same type as a proof.2 This allows a marker to be included as a subproof in a larger proof. For ease
of formal comparison with previous work, the algorithm we present here is only capable of creating markers
for remote subgoals; we describe a trivial modification to allow it to handle locally creatable credentials.

0 global set KB /* knowledge base */

1 〈substitution, credential[ ]〉 bc-askD(
list goals , /* list of conjuncts forming a query */
substitution θ, /* current substitution, initially empty */
set failures) /* set of substitutions that are known

not to produce a complete solution */
2 local set failures ′ /* local copy of failures */

3 if (goals = [ ] ∧ θ ∈ failures) then return ⊥ /* θ known not to produce global solution */
4 if (goals = [ ]) then return 〈θ, [ ]〉 /* base case, solution has been found */
5 q′ ← subst(θ, first(goals))

6 l← determine-location(q′)
7 failures ′ ← failures

8 if (l 6= localmachine) /* if q′ is the belief of a remote principal */
9 m← constructMarker(first(goals), θ, failures ′)
10 if ¬(m ∈ failures ′), return 〈m, [ ]〉

11 foreach (P, q) ∈ KB /* investigate each fact, tactic */
12 if ((θ′ ← unify(q, q′)) 6= ⊥) /* determine if tactic matches first goal */
13 φ← compose(θ′, θ)
14 if (P = [ ]) /* if (P, q) represents a credential */
15 if ¬(φ ∈ failures ′)
16 failures ′ ← φ ∪ failures ′

17 〈answer , creds〉 ← bc-askD(rest(goals), φ, failures) /* prove remainder of goals */
18 if(answer 6= ⊥) return 〈answer , [creds |q]〉 /* append q to creds and return */
19 else while ((〈β, creds〉 ← bc-askD(P, φ, failures ′)) 6= ⊥) /* prove subgoals */
20 failures ′ ← β ∪ failures ′ /* prevent β from being returned again */
21 if (isRemoteMarker(β)), return 〈β, [ ]〉
22 〈answer , creds〉 ← bc-askD(rest(goals), β, failures) /* prove remainder of goals */
23 if (answer 6= ⊥) then return 〈answer , creds〉 /* if answer found, return it */

24 return 〈⊥, [ ]〉 /* if no proof found, return failure */

Figure 3: bc-askD, a delayed version of bc-ask

bc-askD operates by recursively decomposing the original goal into subgoals. The base case occurs
when bc-askD is invoked with an empty goal, in which case bc-askD will determine if the current solu-
tion has been previously marked as a failure and return appropriately (Lines 3–4) of Figure 3. For non-
empty goals, bc-askD will determine if the formula represents the beliefs of a remote principal using the
determine-location subroutine (Line 6), which returns either the constant localmachine or the address of the
remote principal. If the formula is remote, rather than making a remote procedure call, we create a marker
and return (Lines 8–10).

2In Figure 3, a marker is typed as a substitution—this is because bc-askD, as shown, does not construct proof terms. We will
refer to a marker as having the same type as a proof to foster an intuition that is consistent with the implementation.
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If the formula is local or the choice subgoal represented by the remote marker was previously investi-
gated (indicated by the marker’s presence in failures), bc-askD will attempt to prove the goal either directly
from a credential, or via the application of a tactic to the goal (Lines 11–12). bc-askD handles the case
where the goal is directly provable from a credential (Lines 14–18) separately from the case where it is not
(Lines 19–23) only to allow the credential to be appended to the return tuple (Line 18). When the goal
is directly provable from a credential, bc-askD first performs the same function as the base case without
recursing, then attempts to prove the remainder of the goals. If bc-askD applied a tactic, it attempts to re-
cursively prove the premises of that tactic (Line 19). If this results in a remote marker, bc-askD suspends
proving and returns (Line 21). Otherwise, bc-askD attempts to recursively prove the remainder of the goals
(Lines 22–23).

Locally creatable credentials We can extend bc-askD to support the creation of local credentials by the
addition of a section of code prior to Line 11 that, similarly to Lines 8–10, creates a marker when the first
goal is a locally creatable credential. Line 21 suspends proving only for remote markers, so bc-askD will
attempt to complete the proof to determine if creating the credential will lead to a complete proof.

Suspending proving for remote markers For theoretical completeness, bc-askD must suspend proving
after the addition of a remote marker beause the response to a remote request may add credentials to the
local knowledge base, which in turn may increase the ability of bc-askD to prove of the remainder of the
proof. Rather than enumerating all possible ways in which the remainder of the proof might be proved, we
simply suspend the investigation of this branch of the proof once a remote marker has been created. If the
user decides to make a remote request then, upon receipt of the response to this request, we will add any new
credentials to the knowledge base and re-run the original query. In this manner, multiple rounds of proving
can be used to find proofs that involve more than one choice subgoal.

In practice, we expect that proofs requiring multiple rounds will be encountered infrequently—in fact,
they have not arisen in our deployment. Based on the assumption that multiple rounds are seldom necessary,
we introduce an optimization in which the prover, after adding a marker, attempts to complete the remainder
of the proof from local knowledge. In this manner, we can bias the user’s decision towards choices that
produce a complete proof in a single round and away from choices that may never lead to a complete
solution.

6.1.1 Completeness of delayed backward chaining

A delayed backward chaining prover offers strictly greater proving ability than an inline backward chaining
prover. This is stated more formally below; the proof is in Appendix B.

Theorem 3 For any goal G, a delayed distributed prover with local knowledge base KB will find a proof
of G if an inline distributed prover using KB will find a proof of G.

Informally: We first show that in the absence of any markers, the delayed prover will find a proof if the
inline prover finds a proof. We then extend this result to allow remote markers, but under the assumption
that any remote request made by the delayed prover will produce the same answer as an identical remote
request made by the inline prover. Finally, we relax this assumption to show that the delayed prover has
strictly greater proving ability than the inline prover.

6.2 Tactics

In constructing a set of tactics to be used by our backward-chaining engine, we have two goals: the tactics
should make use of facts precomputed by FC and PC, and they should be generated systematically from the
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A says (B speaksfor A) B says F

A says F

(SPEAKSFOR-E)

left prove(A says F ) :-
tactic pathLookup(B says F , A says F ),

prove(B says F ).

right prove(A says F ) :-
tactic proveWithChoiceSubgoal(A says (B speaksfor A)),

factLookup(B says F ).

Figure 4: Example construction of LR tactics from an inference rule

inference rules of the logic.
If a formula F can be proved from local credentials, and all locally known credentials have been incre-

mentally added via FC, then, by Theorem 1, a proof of F already exists in the knowledge base. In this case,
the backward-chaining component of our prover need only look in the knowledge base to find the proof.
Tactics are thus used only when F is not provable from local knowledge, and in that case their role is to
identify choice subgoals to present to the user.

Since the inference rules that describe delegation are the ones that indirectly give rise to the paths pre-
computed by PC, we need to treat those specially when generating tactics; all other inference rules are
imported as tactics directly. We discuss here only delegation rules with two premises; for further discussion
see Section 8.

Inference rules about delegation typically have two premises: one that describes a delegation, and an-
other that allows the delegated permission to be exercised. Since tactics are applied only when the goal is
not provable from local knowledge, one of the premises must contain a choice subgoal. For each delegation
rule, we construct two tactics: (1) a left tactic for the case when the choice subgoal is in the delegation
premise, and (2) a right tactic for the case when the choice subgoal is in the other premise.3 We call tactics
generated in this manner LR tactics.

The insight behind the left tactic is that instead of looking for complete proofs of the delegation premise
in the set of facts in the knowledge base, it looks for proofs among the paths precomputed by PC, thus
following an arbitrarily long delegation chain in one step. The premise exercising the delegation is then
proved normally, by recursively applying tactics to find any remaining choice subgoals. Conversely, the
right tactic assumes that the delegation premise can be proved only with the use of a choice subgoal, and
restricts the search to only those proofs. The right tactic may then look in the knowledge base for a proof of
the right premise in an effort to determine if the choice subgoal is useful to pursue.

Figure 4 shows an inference rule and the two tactics we construct from that rule. All tactics are con-
structed as prove predicates, and so a recursive call to prove may apply tactics other than the two shown.
The factLookup and pathLookup predicates inspect the knowledge base for facts produced by FC and paths
produced by PC. The proveWithChoiceSubgoal acts like a standard prove predicate, but restricts the search
to discard any proofs that do not involve a choice subgoal. We employ rudimentary cycle detection to pre-
vent repeated application of the same right rule. In practice, each of these restrictions can be accomplished
through additional parameters to bc-askD that restrict what types of proof may be returned.

Optimizations to LR The dominant computational cost of running a query using LR tactics is repeated
applications of right tactics. Since a right tactic handles the case in which the choice subgoal represents

3For completeness, if there are choice subgoals in both premises, one will be resolved and then the prover will be rerun. In
practice, we have yet to encounter a circumstance where a single round of proving was not sufficient.
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a delegation, identifying the choice subgoal involves determining who is allowed to create delegations,
and then determining on whose behalf that person wishes to delegate. This involves exhaustively searching
through all paths twice. However, practical experience with our deployed system indicates that people rarely
delegate on behalf of anyone other than themselves. This allows us to remove the second path application
and trade completeness for speed in finding the most common proofs. If completeness is desired, the op-
timized set of tactics could be run first, and the complete version could be run afterwards. We refer to the
optimized tactics as LR′. This type of optimization is made dramatically easier because of the systematic
approach used to construct the LR tactics.

Alternative approaches to caching Naive constructions of tactics perform a large amount of redundant
computation both within a query and across queries. An apparent solution to this problem is to cache
intermediate results as they are discovered to avoid future recomputation. As it turns out, this type of caching
does not improve performance, and even worsens it in some situations. If attempting to prove a formula with
an unbound variable, an exhaustive search requires that all bindings for that variable be investigated. Cached
proofs will be used first, but as the cache is not necessarily all-inclusive, tactics must be applied as well.
These tactics in turn will re-derive the proofs that are in cache. Another approach is to make caching part of
the proving engine (e.g., Prolog) itself. Tabling algorithms [12] provide this and other useful properties, and
have well-established implementations (e.g., http://xsb.sourceforge.net/). However, this approach
precludes adding to cache proofs that are discovered via different proving techniques (e.g., FC, PC, or a
remote prover using a different set of tactics).

6.2.1 Completeness of LR

Despite greater efficiency, LR tactics have strictly greater proving ability than the depth-limited inference
rules. We state this formally below; the proof is in Appendix C.

Theorem 4 Given one prover whose tactics are depth-limited inference rules (IR), and a second prover that
uses LR tactics along with FC and PC, if the prover using IR tactics finds a proof of goal F , the prover using
LR tactics will also find a proof of F .

Informally: We first show show that provers using LR and IR are locally equivalent—that is, if IR finds
a complete proof from local knowledge then LR will do so as well and if IR identifies a choice subgoal then
LR will identify the same choice subgoal. We show this by first noting that if IR finds a complete proof from
local knowledge, then a prover using LR will have precomputed that same proof using FC. We show that
LR and IR find the same choice subgoals by induction over the size of the proof explored by IR and noting
that left tactics handle the case where the proof of the right premise of an inference rule contains a choice
subgoal and that right tactics handle the case where the the left premise contains a choice subgoal. Having
shown local equivalence, we can apply induction over the number of remote requests made to conclude that
a prover using LR will find a proof of F if a prover using IR finds a proof of F .

7 Empirical Evaluation

Since the usability of the distributed access-control system as a whole depends on the timeliness with which
it can generate a proof of access, the most important evaluation metric is the amount of time it takes either to
construct a complete proof, or, if no complete proof can be found, to generate a list of choices to give to the
user. We also consider the number of subgoals investigated by the prover and the size of the knowledge base
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produced by FC and PC. The number of subgoals investigated represents a coarse measure of efficiency that
is independent of any particular Prolog implementation.

We compare the performance of five proving strategies: three that represent previous work and two (the
combination of FC and PC with either LR or LR′) that represent the strategies introduced here. The strategies
that represent previous work are backward chaining with depth-limited inference rules (IR), inference rules
with basic cycle detection (IR-NC), and hand-crafted tactics (HC). HC evolved from IR during our early
deployment as an effort to improve the efficiency of the proof-generation process. As such, HC represents
our best effort to optimize a prover that uses only backward chaining to the policies used in our deployment,
but at the cost of theoretical completeness.

We analyze two scenarios: the first represents the running example presented previously (which is drawn
from our deployment), and the second represents the policy described by our previous work [4], which is
indicative of a larger deployment. As explained in Section 7.2, these large policies are the most challenging
for our strategy.

Our system is built using Java Mobile Edition (J2ME), and the prover is written in Prolog. We perform
simulations on two devices: a Nokia N70 smartphone, which is the device used in our deployment, and
a dual 2.8 Ghz Xeon workstation with 1 GB of memory. Our Prolog interpreter for the N70 is JIProlog
(http://www.ugosweb.com/jiprolog/) due to its compatibility with J2ME. Simulations run on the
workstation use SWI-Prolog (http://www.swi-prolog.org/).

7.1 Running Example

Scenario As per our running example, Alice controls access to a machine room. We simulate a scenario
in which Charlie wishes to enter the machine room for the first time. To do so, his prover will be asked
to generate a proof of Dept says open(door1). His prover will immediately realize that Dept should be
asked for help, but will continue to reason about this formula using local knowledge in the hope of finding a
proof without making a request. Lacking sufficient authority, this local reasoning will fail, and Charlie will
be presented with the option to ask Dept for help. Preferring not to bother the department head, Charlie will
decide to ask his manager, Alice, directly.

Creating a complete proof in this scenario requires three steps: (1) Charlie’s prover attempts to construct
a proof, realizes that help is necessary, and asks Alice, (2) Alice’s phone constructs a proof containing a
delegation to Charlie, and (3) Charlie assembles Alice’s response into a final proof. As Alice’s phone holds
the most complicated policy, step 2 dominates the total time required to find a proof.

Policy The policy for this scenario is expressed in the credentials known to Alice and Charlie, shown in
Figures 5 and 6. The first six credentials of Figure 5 represent the delegation of access to the machine-room
doors from the department to Alice, and her redelegation of these resources to the group Alice.machine-room.
Credentials 6–8 indicate that the group Alice.machine-room already includes Bob, David, and Elizabeth.
Notably, Alice has not yet created a credential that would give Charlie access to the machine room. We will
analyze the policy as is, and with the addition of a credential that adds Charlie to the machine-room group.
Credentials 9–11 deal with other resources that Alice can access. The final credential is given to Alice when
Charlie asks her for help: it indicates Charlie’s desire to open door1.

Charlie’s policy (Figure 6) is much simpler. He has access to a shared lab space through his membership
in the group Dept.residents, to which the department has delegated access. He has no credentials pertaining
to the machine room.

The only credential in Figures 5 and 6 that was created at the time of access is the one indicating Charlie’s
desire to access door1. This means that FC and PC have already been run on all other credentials.
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0 KDept signed (delegate(Dept,Alice,door1))
1 KDept signed (delegate(Dept,Alice,door2))
2 KDept signed (delegate(Dept,Alice,door3))
3 KAlice signed (delegate(Alice, Alice.machine-room, door1))
4 KAlice signed (delegate(Alice, Alice.machine-room, door2))
5 KAlice signed (delegate(Alice, Alice.machine-room, door3))
6 KAlice signed (BobspeaksforAlice.machine-room)
7 KAlice signed (DavidspeaksforAlice.machine-room)
8 KAlice signed (ElizabethspeaksforAlice.machine-room)

9 KDept signed (delegate(Dept,Alice,office))
10 KDept signed (delegate(Dept,Dept.residents,lab-door))
11 KDept signed (AlicespeaksforDept.residents)

12 KCharlie signed open(door1)

Figure 5: Credentials on Alice’s phone

13 KDept signed (delegate(Dept,Dept.residents,lab-door))
14 KDept signed (CharliespeaksforDept.residents)
15 KCharlie signed open(door1)

Figure 6: Credentials on Charlie’s phone

Performance Figure 7 describes the proving per-
formance experienced by Alice when she attempts
to help Charlie. Alice wishes to delegate author-
ity to Charlie by making him a member of the
Alice.machine-room group. We show performance
for the case where this credential does not yet exist,
and the case where it does. In both cases, Alice’s
phone is unable to complete a proof with either IR

or IR-NC as both crash due to lack of memory after
a significant amount of computation. To demon-
strate the relative performance of IR and IR-NC,
Figure 7 includes (on a separate y-axis) results col-
lected on a workstation. IR, IR-NC, and HC were
run with a depth-limit of 7, chosen high enough to
find all solutions on this policy.

In the scenario where Alice has not yet dele-
gated authority to Charlie, HC is over six times
slower than LR, and more than two orders of magni-
tude slower than LR′. If Alice has already added Charlie to the group, the difference in performance widens.
Since FC finds all complete proofs, it finds the proof while processing the credentials supplied by Charlie,
so the subsequent search by LR and LR′ is a cache lookup. The result is that a proof is found by LR and LR′

almost 60 times faster than HC. When run on the workstation, IR and IR-NC are substantially slower than
even HC.
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Figure 8 shows the total time required to generate a proof of access in the scenario where Alice must re-
actively create the delegation credential (IR and IR-NC are omitted as they crash). This consists of Charlie’s
initial attempt to generate a proof, Alice’s proof generation that leads to the creation of a new credential,
and Charlie assembling Alice’s reply into a final proof. The graph also shows the division of computation
between the incremental algorithms FC and PC and the backward search using tactics. In overall computa-
tion, HC is six times slower than LR and 60 times slower than LR′. This does not include the transit time
between phones, or the time spent waiting for users to choose between different options.
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Since computation time is dependent on the Prolog implementation, as a more general metric of ef-
ficiency we also measure the number of formulas investigated by each strategy. Figure 9 shows the total
number of formulas investigated (including redundant computation) and the number of unique formulas in-
vestigated (note that each is measured on a separate y-axis). LR and LR′ not only investigate fewer unique
formulas than previous approaches, but drastically reduce the amount of redundant computation.

7.2 Large Policies

Although our policy is a real one used in practice, in a widespread deployment it is likely that policies will
become more complicated, with users having credentials for dozens of resources spanning multiple organi-
zations. Our primary metric of evaluation is proof-generation time. Since backward chaining only considers
branches, and hence credentials, that are relevant to the proof at hand, it will be least efficient when all
credentials must be considered, e.g., when they are generated by members of same organization. As a sec-
ondary metric, we evaluate the size of the knowledge base, as this directly affects the memory requirements
of the application as well as the speed of unification. Since credentials from the same organization are more
likely to be combined to produce a new fact or path, the largest knowledge base will occur when all creden-
tials pertain to the same organization. In this section, we evaluate a policy where all credentials pertain to
the same organization as it represents the worst case for both metrics.
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Figure 10: An access-control policy presented in
our previous work [4]

Policy We evaluate our work with respect to the policy presented in our previous work [4]. This policy
represents a university-wide deployment. In addition to its larger size, this policy has a more complex
structure than the policy described in Section 7.1. For example, the university maintains a certification
authority (CA) that binds names to public keys, thus allowing authority to be delegated to a principal’s
name. Furthermore, many delegations are made to roles (e.g., Dept.Manager1), to which principals are
assigned using additional credentials.

We simulate the performance of our approach on this policy from the standpoint of a principal who has
access to a resource via a chain of three delegations (assembled from 10 credentials), and wants to extend
this authority to a subordinate.

Performance Figure 11 shows the proof-generation time of the different strategies for different num-
bers of subordinates on the workstation. For these policies, the depth limit used by IR, IR-NC, and HC
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must be 10 or greater. However, IR crashed at any depth limit higher than 7, and is therefore not included
in these simulations. Simulations on this policy used a depth-limit of 10. IR-NC displays the worst per-
formance on the first three policy sizes, and exhausts available memory and crashes for the two largest
policies. HC appears to outperform LR, but, as the legend indicates, was unable to find 11 out of the 14
possible solutions, including several likely completions, the most notable of which is the desired completion
Alice says (Charlie speaksfor Alice. machine-room). This completion is included in the subset of com-
mon solutions that LR′ is looking for. This subset constitutes 43% of the total solution space, and LR ′ finds
all solutions in this subset several orders of magnitude faster than any other strategy.

The size of the knowledge base for each policy is shown in Figure 12. The knowledge base consists
of certificates and, under LR and LR′, facts and paths precomputed by FC and PC. We observe that many
credentials from the same policy cannot be combined with each other, yielding a knowledge base whose
size is approximately linear with respect to the number of credentials.

In summary, the two previous, theoretically complete approaches (IR and IR-NC) are unable to scale
to the larger policies. HC, tailored to run on a particular policy, is unable to find a significant number
of solutions when used on larger policies. LR is able to scale to larger policies while offering theoretical
completeness guarantees. LR′, which is restricted to finding a common subset of solutions, finds all of those
solutions dramatically faster than any other approach.

8 Generality of Our Approach

Although we described and evaluated our technique with respect to a particular access-control logic and
system, it can be applied to others, as well. There are three aspects of generality to consider: supporting
the logical constructs used by other logics, performing efficiently in the context of different systems, and
enabling other applications.

Other logics When applying our approach to other logics, we must consider individually the applicability
of each component of our approach: FC, PC, and the generation of LR tactics. We consider our technique
with respect to only monotonic authorization logics, i.e., logics where a formula remains provable when
given more credentials. This constraint is commonly used in practical systems (cf., [10]).

As discussed previously, to ensure that the forward-chaining component of our prover terminates, the
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logic on which it is operating should be a subset of Datalog, or, if function symbols are allowed, their use
must be constrained (as described in Section 4). This is sufficient to express most access-control logics,
e.g., the logics of SD3 [21], Cassandra [6], and Binder [13], but is not sufficient to express higher-order
logic, and, as such, we cannot fully express the access-control logic presented by Appel and Felten [2]. The
general notion of delegation introduced in Definition 1 is conceptually very similar to that of the various
logics that encode SPKI [1, 27, 19], the RT family of logics [28], Binder [13], Placeless Documents [3], and
the domain-name service logic of SD3 [21], and so our technique should apply to these logics as well.

Our path-compression algorithm and our method for generating LR tactics assume that any delegation
rule has exactly two premises. Several of the logics mentioned above (e.g., [21, 13, 3]) have rules involving
three premises; however, initial investigation suggests that any multi-premise rule may be rewritten as a
collection of two-premise rules.

Path compression requires a decidable algorithm for computing the intersection of two permissions. That
is, when combining the paths (Alice says F,Bob says F ) and (Bob says open(door1),Charlie says

open(door1)), we need to determine the intersection of F and open(door1) for the resulting path. For
our logic, computing the permission is trivial, since in the most complicated case we unify an uninstantiated
formula F with a fully instantiated formula, e.g., open(door1). In some cases, a different algorithm may
be appropriate: for SPKI, for example, the algorithm is a type of string intersection [14].

Other systems Our strategies should be of most benefit in systems where (a) credentials can be created
dynamically, (b) credentials are distributed among many parties, (c) long delegation chains exist, and (d)
credentials are frequently reused. Delayed backward chaining pursues fewer expensive subgoals, thus im-
proving performance in systems with properties (a) and (b). Long delegation chains (c) can be effectively
compressed using either FC (if the result of the compression can be expressed directly in the logic) or PC

(when the result cannot be expressed in the logic). FC and PC extend the knowledge base with the results
of their computation, thus allowing efficient reuse of the results (d).

These four properties are not unique to our system, and so we expect our technique, or the insights
it embodies, will be useful elsewhere. For example, Greenpass [17] allows users to dynamically create
credentials. Properties (b) and (c) have been the focus of considerable previous work, notably SPKI [1, 27,
19], the DNS logic of SD3 [21], RT [28], and Cassandra [6]. Finally, we feel that (d) is common to the vast
majority of access-control systems, as a statement of delegation is typically intended to be reused.

Other applications There are situations beyond our smartphone-oriented setting when it is necessary to
efficiently compute similar proofs and where the efficiency offered by our approach is welcome or necessary.
For example, user studies conducted at our institution indicated that, independently of the technology used
to implement an access-control system, users strongly desired an auditing and credential-creation tool that
would allow them to better understand the indirect effects on policy of creating new credentials by giving
them real-time feedback as they experimented with hypothetical credentials. If Alice wants to create a new
credential KAlice signed delegate(Alice, Alice.machine-room, door4), running this hypothetical creden-
tial through the path-compression algorithm could inform Alice that an effect of the new credential is that
Bob now has access to door4 (i.e., that a path for door4 was created from Bob to Alice). Accomplishing
an equivalent objective using IR or IR-NC would involve assuming that everyone is willing to access every
resource, and attempting to prove access to every resource in the system—a very inefficient process.
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9 Related Work

Many distributed access-control systems model access-control decisions in a formal logic. Section 8 briefly
discusses the expressiveness of various logics; here we focus on the mechanisms for making access-control
decisions in a distributed system. These mechanisms fall, roughly speaking, into two categories: remote
credential retrieval and distributed reasoning. We briefly describe previous work in this context; however,
we are aware of no previous algorithm that meets all of our requirements detailed in Section 2.1, and no
works that analyze the performance of the distributed proving alternatives we consider.

Remote credential retrieval Several existing distributed access-control systems support distributed know-
ledge bases by retrieving credentials from remote parties when needed; we highlight a few here. Binder [13],
PolicyMaker [9], and KeyNote [10, 8], provide general languages for defining access-control policy in a
distributed scenario. Signed credentials allow the policy to be transported between nodes, but the mecha-
nisms for accomplishing this are left unspecified. Placeless Documents defines a logic for enforcing access-
control for distributed Java applications [3], but does not specify how remote credentials are to be retrieved.
SPKI is a syntax for digital certificates dealing with authentication [14] that has been modeled in formal
logic [1, 27, 19] and used to implement access control for web pages [30] and wireless networks [17] in
a manner that includes provisions for collecting remote credentials for these particular scenarios. RT is a
language for defining trust where the provided search algorithm for evaluating access-control decisions is
capable of retrieving remote credentials [29]. SD3 is a distributed trust-management framework that extends
the evaluation techniques of QCM [18, 22] and utilizes both a push and a pull model for migrating creden-
tials between parties [21]. Bauer et al. use the proof-carrying authorization framework [2] to guard access
to web content; the client’s theorem prover will retrieve remote credentials in the course of proof-generation
as needed [5]. Cassandra provides a general framework for specifying distributed multi-domain policies and
supports remote credential retrieval from locations specified in the credential [6]. The Strongman architec-
ture specifies policy as KeyNote programs; credentials are stored on designated repositories [24]. Zhang et
al. propose a usage-control authorization system for collaborative applications [35]. In their system, access-
control decisions are made continuously based on credentials from distant sources. They investigate various
mechanisms for efficiently retrieving needed credentials, but the process that reasons about these credentials
runs on a single node. Our work differs from these in that, instead of collecting individual credentials from
remote parties, our approach involves these parties in the reasoning process itself.

Distributed reasoning The second category of systems supports distributed reasoning about access-
control policies. This approach allows the remote retrieval of subproofs rather than credentials, which pre-
vious work showed substantially reduces the number of remote requests necessary to complete a proof [4].
Minami et al. use this approach for context-sensitive authorization queries [31], and extend it to provide
distributed cache consistency in the face of certificate revocation [32]. Alpaca supports the assembly of a
proof from a collection of subproofs constructed by distant parties, but does not specify how these proofs are
to be collected [26]. We improve upon these works by providing new techniques that improve the efficiency
of the proof-generation process in light of the requirements of Section 2.1.

Other related work Several other systems incorporate ideas relevant to our work. PeerAccess provides a
framework for describing policies that govern interactions between principals [34]. PeerAccess uses proof
hints encoded in the knowledge base to guide whom a principal asks when local knowledge is insufficient to
construct a proof. In Cassandra, credentials may explicitly encode their location. In contrast to PeerAccess
and Cassandra, our approach seeks to leverage the user’s intuition when directing remote queries. Know
is a system for providing user feedback when access is denied; meta-policies are used to govern what
information about policies is revealed to whom [23]. Know is complementary to our work, as its primary
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concern is providing the user with information after an access-control decision has been made.
Greenpass engages users to gain consent for granting delegations [17], but a user may create only a more

limited form of delegation than we consider here. This eliminates the need to explore the many hypothetical
possibilities that our method explores. Jajodia et al. propose a general framework for describing partially
specified hierarchical access-control policies [20]. To allow quick access-control decisions, a graph of
permissions is computed a priori. However, their framework operates on a centralized policy managed by a
single entity, and does not allow new permissions to be created in response to a query. Bertino et al. propose
Trust-X to negotiate trust between peers [7]. As negotiation is expensive, they seek to bypass it using two
optimizations: trust tickets and sequence prediction. Trust tickets are new credentials that contain the result
of previous negotiations. Sequence prediction uses past negotiations to suggest credentials that will establish
trust without going through the negotiation process. Our precomputation techniques are complementary as
they are aimed at improving the efficiency of the expensive step in cases where it is unavoidable.

10 Conclusion

In this paper we presented a new approach to generating proofs that accesses comply with access-control
policy. Our strategy is targeted for environments in which credentials must be collected from distributed
components, perhaps only after users of those components consent to their creation, and our design is in-
formed by such a testbed we have deployed and actively use at our institution. Our technique embodies three
contributions, namely: novel approaches for minimizing proof steps that involve remote queries or user in-
teraction; methods for inferring delegation chains off the critical path of accesses that significantly optimize
proving at the time of access; and a systematic approach to generating tactics that yield efficient backward
chaining. We demonstrated analytically that the proving ability of this technique is strictly superior to pre-
vious work, and demonstrated empirically that it is efficient on policies drawn from our deployment and
will scale effectively to larger policies. Our method will generalize to other security logics that exhibit the
common properties detailed in Section 8.
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A Completeness of PC

At a high level, we first show that add-path will combine all paths that can be combined—that is, for any
paths (p, q) and (p′, q′) if q unifies with p′ then the path (p, q′) will have been added. As mentioned in
Section 5, union is defined to prevent cyclic paths (i.e., (p, p)) from ever being added. We then proceed to
show that for all credentials that represent a path, all independent credentials are added, and all credentials
that depend on the existence of another path are added whenever that path becomes known.

For the purpose of clarity, within the scope of this Appendix, if unify(a, b) 6= ⊥ then we will write a = b

and use a and b interchangeably. We let [kp] represent line k in PC, and [ka] represent line k in add-path.

Lemma 1 If paths and incompletePaths are initially empty, and add-path is invoked repeatedly with a
series of inputs, then after any invocation of add-path completes, the following holds: ∀(x, y) ∈ paths ,∀(x ′,

y′) ∈ paths , (unify(y′, x) 6= ⊥) ⊃ (x′, y) ∈ paths .

Proof We prove Lemma 1 by induction over the number of calls i that have been made to add-path, where a
call corresponds to the addition of a single credential. Our induction hypothesis states that condition C holds
after i− 1 calls, where C is (∀(x, y) ∈ paths , ∀(x′, y′) ∈ paths , (unify(y′, x) 6= ⊥) ⊃ (x′, y) ∈ paths).
Base case: The base case occurs when i = 1. Prior to this call, paths is empty. Since [17a] will add (p, q)
to paths and unify(p, q) = ⊥ (or else credToPath would have returned ⊥ on [3p]) the if statements on [20a]
and [26a] will fail and the function will exit with paths containing the single element (p, q). Since paths

will contain a single element, the induction hypothesis holds.
Inductive case: For the inductive case, we must show that C holds after the ith call to add-path. We prove
the inductive case by first making the following observations:
Observation 1: By the time [24a] is reached, if (p, q) is the parameter to add-path ([15a]), then paths and
newPaths will contain every path (p, q ′) such that unify(q, p′) 6= ⊥ and (p′, q′) ∈ paths .
Observation 2: When add-path terminates, paths will contain every (p′, q′′) such that (p′, q′) ∈ paths ,
(p′′, q′′) ∈ newPaths , and unify(q′, p′′) 6= ⊥.
Observation 3: If an invocation of add-path, when given input parameter (p, q), adds the path (x, y), then,
ignoring the mechanics of add-path, (x, y) must be characterized by one of the following:

1. (x, y) = (p, q)

2. x = p and (q, y) ∈ paths prior to invocation i

3. (x, p) ∈ paths prior to invocation i and y = q

4. (x, p) ∈ paths prior to invocation i and (q, y) ∈ paths prior to invocation i

In situation 2, (x, y) represents the addition of an existing path to one end of (p, q). Situation 3 is simply the
opposite of 2. In situation 4, (x, y) represents the addition of existing path to both ends of (p, q).

We must show that C holds in the following cases, which describe all possible combinations of (x, y)
and (x′, y′) prior to invocation i:
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1. (x, y) ∈ paths , (x′, y′) ∈ paths ;

2. (x′, y′) ∈ paths but (x, y) 6∈ paths (or, conversely, that (x, y) ∈ paths but (x′, y′) 6∈ paths );

3. (x, y) 6∈ paths and (x′, y′) 6∈ paths .

Case 1: Lemma 1 assumes that y′ = x. From this and the definition of Case 1, our induction hypothesis
tells us that (x′, y) ∈ paths prior to invocation i. Since add-path does not remove elements from
paths , (x′, y) ∈ paths after invocation i, and so C holds.

Case 2 From the definition of Case 2, we know that (x, y) is added during the ith invocation of add-path.
This implies that (x, y) must have been added at one of the following locations (with the situation that
led to the addition in parenthesis):

a. [17a] ((1) of Observation 3)

b. [22a] ((2) of Observation 3)

c. [28a] ((3) or (4) of Observation 3)

We note that the most complex scenario is the second possibility for subcase c (4). We prove only the
second possibility for subcase c, and note that subcases a, b, and the first possibility of subcase c can
be proven analogously.

Step 2.1: We first observe that prior to invocation i, (x′, y′) ∈ paths (by the assumptions of Case 2)
and (x, p) ∈ paths (by the assumptions of the second possibility of Case 2c). If (x ′, y′) ∈ paths

and (x, p) ∈ paths prior to invocation i, and y ′ = x (by assumption of Lemma 1), then our
induction hypothesis tells us that (x′, p) ∈ paths .

Step 2.2: Since (q, y) ∈ paths (by the assumptions of the second possibility of Case 2c) we can
apply Observation 1 to conclude that, by the time [24a] is reached, (p, y) ∈ newPaths .

From Step 2.1, we know that prior to invocation i, (x′, p) ∈ paths and from Step 2.2 we know that
by the time [24a] is reached, (p, y) ∈ newPaths . From this, we can apply Observation 2 to conclude
that (x′, y) will be added to paths . Thus C holds.

Case 3 We note that both (x, y) and (x′, y′) can be added to paths in any of the three locations mentioned
in case 2. Again, we prove the most complex case (the second possibility of subcase c), where both
(x, y) and (x′, y′) are added on [28a].

Since Case 3 assumes that both (x, y) and (x′, y′) are added during the ith invocation of add-path, we
can apply Observation 3 to both (x, y) and (x′, y′) to conclude that (x, p), (x′, p), (q, y), and (q, y′)
are all elements of paths prior to invocation i. Since (q, y) ∈ paths , Observation 1 tells us that by the
time [24a] is reached, (p, y) ∈ newPaths . Since (x′, p) ∈ paths and (p, y) ∈ newPaths , Observation
2 tells us that when add-path terminates, (x′, y) ∈ paths fulfilling C.

Since each of the three subcases of the inductive case allows us to conclude C, the induction hypothesis
is true after invocation i.

Having shown that ∀(x, y) ∈ paths , ∀(x′, y′) ∈ paths , (unify(y′, x) 6= ⊥) ⊃ (x′, y) ∈ paths holds for
the base case and the inductive case, we can conclude that Lemma 1 holds. 2
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Lemma 2 From an initially empty knowledge base, If c1, . . . , cn are the credentials given to PC as input
for invocations 1, . . . , n, then after the nth invocation of PC, the following must hold for each cj , j ≤ n:

1. If ((p, q)← credToPath(cj)) 6= ⊥ and depends-on(cj) = ⊥, add-path((p, q)) has been invoked and
(p, q) ∈ paths .

2. If ((p, q) ← credToPath(cj)) 6= ⊥, π ← depends-on(cj) and π ∈ paths , add-path((p, q)) has been
invoked and (p, q) ∈ paths .

Proof We note that incompletePaths is a list of tuples that contain a credential and the path it depends
on. The path is derivable directly from the credential, and is included only for ease of indexing. For ease
of presentation, we will refer to the elements of incompletePaths as credentials. We prove Lemma 2
by induction over the number of invocations i of PC. Our induction hypothesis is that conditions 1-2 of
Lemma 2 (which we label C) hold after invocation i− 1.
Base case: The base case occurs when i = 1. It is straightforward to see that for any credential c1 such that
credToPath(c1) 6= ⊥ and depends-on(c1) = ⊥, c1 will be converted to a path and given to add-path on
[9p]. Since paths is initially empty, it is not possible for a path to depend on a π ∈ paths as is required by
the second condition of Lemma 2. In this case, if credToPath(c1) 6= ⊥ and π ← depends-on(c1), c1 must
be added to incompletePaths on [6p].
Inductive case: For the inductive case, if credToPath(ci) = ⊥, PC immediately exits ([3p]). If credToPath(
c1) 6= ⊥, π ← depends-on(c1), and π 6∈ paths , ci is added to incompletePaths , and PC will exit without
adding any new paths. In both cases, C is trivially true by the induction hypothesis.

In all other cases, ci will be converted to a path (p, q) and given to add-path ([9p]), which adds (p, q)
to paths ([17a]). However, if ci was given to add-path ([9p]), it is possible that the invocation of add-path

added to paths a path π that a previous credential cj (where 0 < j < i) depends on. If such a path was added,
then cj ∈ incompletePaths (by [6p] of the jth invocation of PC). To compensate for this, after invoking
add-path for ci, PC iterates through incompletePaths ([10p]) and invokes add-path for any credential that
depends on a path π ∈ paths .

We have shown that after the ith invocation of PC completes, add-path has been invoked for ci. We
have also shown that for any credential cj ∈ incompletePaths that depends on a path created during the
ith invocation of PC, add-path has been invoked for cj as well. From this and our induction hypothesis, we
can conclude that when PC exits, add-path has been invoked with each credential that depends on a path
π ∈ paths i, which satisfies the conditions of C. 2

Theorem 2 If PC has completed on KB , then for any A,B such that A 6= B, if for some F (B says F ⊃
A says F ) in the context of KB , then (B says F,A says F ) ∈ KB .

Proof If (B says F ⊃ A says F ) is true, then there must exist a set of delegation credentials from which we
can conclude (B says F ⊃ A says F ). Since all credentials are given as input to PC, from Lemma 2 we can
conclude that add-path has been invoked for all independent credentials and for all dependent credentials
that depend on a path that exists. We then apply Lemma 1 to show that, from the set of credentials given to
add-path, all possible paths have been constructed, thus proving Theorem 2. 2

B Completeness of Delayed Backward Chaining

Our objective is to demonstrate that the proving ability of a prover that uses delayed backward chaining
is strictly greater than the proving ability of a prover that uses the inline backward chaining algorithm we
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0 global set KB /* knowledge base */

1 substitution bc-askI( /* returns a substitution */
list goals , /* list of conjuncts forming a query */
substitution θ, /* current substitution, initially empty */
set failures) /* set of substitutions that are known

not to produce a complete solution */
2 local substitution answer /* a substitution that solves all goals */
3 local set failures ′ /* local copy of failures */
4 local formula q′ /* result of applying θ to first goal */

5 if (goals = [ ] ∧ θ ∈ failures) then return ⊥ /* θ known not to produce global solution */
6 if (goals = [ ]) then return θ /* base case, solution has been found */
7 q′ ← subst(θ, first(goals))

8 l← determine-location(q′) /* prove first goal locally or remotely? */
9 failures ′ ← failures

10 if (l 6= localmachine)
11 while ((α← rpc

l
(bc-askI(first(goals), θ, failures ′))) 6= ⊥) /* make remote request */

12 failures ′ ← α ∪ failures ′ /* prevent α from being returned again */
13 answer ← bc-askI(rest(goals), α, failures) /* prove remainder of goals */
14 if (answer 6= ⊥) then return answer /* if answer found, return it */

15 else foreach (P, q) ∈ KB /* investigate each tactic */
16 if ((θ′ ← unify(q, q′)) 6= ⊥) /* determine if tactic matches first goal */
17 while ((β ← bc-askI(P, compose(θ′, θ), failures ′)) 6= ⊥) /* prove subgoals */
18 failures ′ ← β ∪ failures ′ /* prevent β from being returned again */
19 answer ← bc-askI(rest(goals), β, failures) /* prove remainder of goals */
20 if (answer 6= ⊥) then return answer /* if answer found, return it */
21 return ⊥ /* if no proof found, return failure */

Figure 13: bc-askI , an inline backward chaining algorithm [4]

presented previously [4] (reproduced in Figure 13). For the purpose of formal comparison, we assume that
all caching optimizations described in our previous work are disabled. We also assume that all participants
contributing to the construction of a distributed proof use the same set of tactics.

We refer to the inline backward chaining prover as bc-askI . bc-askI outputs either a complete proof or
⊥, while bc-askD (shown in Figure 3) may additionally output a marker indicating a choice subgoal that
needs to be proved. As such, a wrapper mechanism must be used to repeatedly invoke bc-askD, aggregate
markers, and chose which marker to purse, e.g., by asking the user. To accomplish this, we introduce the
abstraction of a distributed prover, of which bc-askI is an example. To construct a distributed prover using
bc-askD, we define a wrapper, bcD (shown in Figure 14) that accomplishes the above objectives. bcD is
designed explicitly for formal comparison; as such, it lacks mechanisms (e.g., for local credential creation,
user interaction) that are necessary in practice, but not present in bc-askI . The addition of these mechanisms
allows the delayed distributed prover to find proofs in situations where an inline distributed prover is unable
to do so.

Our task is now to show that a delayed distributed prover will find a proof of a goal if an inline distributed
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prover finds a proof. We let [kd] represent line k in bc-askD, [kbcd] represent line k in bcD, and [ki] represent
line k in bc-askI . We will make use of the term recursion height, defined below. Note that because all the
functions we consider here are deterministic, the recursion height is well-defined.
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0 〈substitution, credential[ ]〉 bcD( /* returns a substitution */
list goals , /* list of conjuncts forming a query */
substitution θ, /* current substitution, initially empty */
set failures) /* set of substitutions that are known

not to produce a complete solution */
1 local set markers , failures ′

2 failures ′ ← failures

3 while ((〈β, creds〉 ← bc-askD(goals, θ, failures ′)) 6= ⊥) /* find all solutions */
4 if notMarker(β), return 〈β, creds〉 /* if complete proof found, return*/
5 markers ← markers ∪ {β}
6 failures ← failures ∪ {β}

7 for each m ∈ markers

8 〈f, θ, failures ′〉 ← m

9 while((〈α, creds〉 ← rpc
l
(bcD(f, θ, failures ′))) 6= ⊥)

10 failures ′ ← α ∪ failures ′

11 addToKB(creds )
12 〈β, creds〉 ← bcD(goals , θ, failures)
13 if (β 6= ⊥), return 〈β, creds〉
14 return 〈⊥, null〉

Figure 14: bcD, a wrapper to process partial proofs returned by bc-askD

Definition 2 We define the environment of a function invocation to be the values of all globals when the
function is called and the parameter values passed to the function. The recursion height of a function
in a given environment is the depth of recursive calls reached by an invocation of that function with that
environment.

Terminating tactics We note that when the inline prover finds a proof by making a remote request, it may
not fully explore the search space on the local node. Since a delayed prover investigates all branches locally
before making a request, should a later branch not terminate, no solution will be found. We assume here
that all sets of tactics terminate on any input, which is a requirement in practice to handle the case in which
no proof exists. In the case where a depth limiter is necessary to guarantee termination, the same limit will
be used for both delayed and inline provers.

Lemma 3 Consider two knowledge bases KB and KB ′ such that KB ⊂ KB ′. Assume that when trying to
prove goal G using KB , bc-askD finds ρ, which is either a complete proof or a proof containing a marker.
If bc-askD is invoked repeatedly with goal G and knowledge base KB ′ and each previous proof is added to
failures , then an invocation of bc-askD will find ρ.

Proof sketch As discussed in Section 8, we assume that the logic is monotonic—that is, if a proof of G exists
from KB , it also exists from KB ′. Line [11d] iterates through all elements of the knowledge base. The only
places that exit this loop prematurely are [18d], [21d], and [23d]. Through induction over the recursion
height of bc-askD, we can show that if the proof returned by one of these lines is added to failures on a
subsequent call to bc-askD([17d], [19d], or [22d]), then that proof will be disregarded and the next element
of the knowledge base will be considered ([11d]). If this is repeated sufficiently many times, bc-askD using
KB ′ will find the same proof ρ produced by bc-askD using KB . 2
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Lemma 4 For any goal G and knowledge base KB , bc-askD using tactic set T will find a proof of G

without making any remote requests if bc-askI using T will find a proof of G without making any remote
requests.

Proof sketch If bc-askI finds a proof without making a request, then the proof must be completable from
the local knowledge base and the search for the proof must not involve investigating any formulas of the
form A says F such that determine-location(A) 6= localmachine . Our induction hypothesis states that if
both bc-askI and bc-askD make a recursive call with identical environments that will have recursion height
h, then the recursive bc-askD call will return the same result as the recursive bc-askI call.
Base case: The base case is when the recursion height = 0, which occurs when goals = [ ]. Since an
assumption of this case is that all input parameters to bc-askD are the same as bc-askI , by inspection of the
algorithms ([3d]-[4d], [5i]-[6i]), bc-askD and bc-askI will both return ⊥ if θ ∈ failures , or θ otherwise.
Inductive case: For the inductive case, we assume that, at recursion height h + 1, bc-askD was invoked
with the same parameters as bc-askI . Since, by the assumptions of this lemma, bc-askI does not make any
remote requests, l must resolve to the local machine on [6d] and [8i], thus bypassing [9d]-[10d] and [11i]-
[14i]. This means that both strategies will behave identically until after q ′ is unified against an element in the
KB ([12d], [16i]). At this point, there are two cases to consider: (1) (P, q) is a tactic or (2) (P, q) represents
a credential or a fact. In either case, bc-askI will continue to [17i].

Case 1: If (P, q) is a tactic, then P will be non-empty, causing bc-askD to continue to [19d] . At this point,
the parameters to the recursive call on [19d] are identical to those of [17i], and we can apply our
induction hypothesis to conclude that [19d].β = [17i].β. β is then added to failures ′, ensuring that
the parameters to [19d] will remain identical to [17i] on subsequent iterations. Since, by assumption,
no remote requests are necessary, [21d] will never be executed. Since all parameters to the recursive
call on [22d] are identical to those of [19i], we can apply our induction hypothesis to conclude that
[22d].answer = [19i].answer . If answer 6= ⊥, it will be returned in both scenarios, otherwise
bc-askD and bc-askI will continue to the next iteration of [19d] and [17i]. With [22d].answer =
[19i].answer for each iteration, if bc-askI returns a solution, bc-askD will also. Otherwise, bc-askD

and bc-askI will return ⊥.

Case 2: The second case occurs when (P, q) represents a credential or a fact. This implies that P is an
empty list. Then, [17i] will return with β = ⊥ if compose(θ ′, θ) ∈ failures ′ ([5i]), and β =
compose(θ′, θ) ([6i]) otherwise. Note that β is added to failures ′ on [18i], so the recursive call inside
the while loop on [17i] will succeed only once.

Because P = [ ], the condition of the if statement on [14d] will be true. If φ ∈ failures ′ (where
φ = compose(θ′, θ) from [13d]) then [16d]-[18d] will not be executed. bc-askD will then proceed
to try the next element in the knowledge base ([11d]), which is the same as the behavior of bc-askI

when [17i].β = ⊥. If [15d].φ is not in failures ′, then [16d]-[18d] will be executed. Since φ is not
modified between [13d] and [17d], [17d].φ = compose(θ ′, θ) = [19i].β. At this point, we know that
all parameters to the recursive call on [17d] equal those of [17i]. At this point, we can apply our
induction hypothesis to show that [17d].answer = [19i].answer . From this, we can conclude that if
bc-askI finds a proof, bc-askD will find a proof as well. 2

Lemma 5 For any distributed proving node attempting to prove goal G with knowledge base KB , bcD will
find a proof of G if bc-askI would find a proof of G, under the assumption that all remote requests, if given
identical parameters, will return the same answer in both strategies.
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Proof We prove Lemma 5 via induction over the number of remote requests r that a local prover using
bc-askI makes to complete the proof. Our induction hypothesis states that for all queries such that bc-askI

finds a proof with r − 1 requests, bcD will find a proof as well.
Base Case: The base case occurs when r = 0 and can be shown by direct application of Lemma 4.
Inductive Case: We prove the inductive case by (1) showing that bcD will eventually make a remote
request that is identical to the initial remote request made by bc-askI , (2) showing that when bcD re-runs
the entire query after the remote request finishes ([12bcd]), this query will be able to find a proof of the
formula proved remotely in (1) using only local knowledge, and (3) showing that, after deriving the proof
described in (2), bc-askD will recurse with the same parameters that bc-askI recurses with after bc-askI

finishes its initial remote request.

Step 1: By an argument analagous to that of Lemma 4, we assert that bc-askD will behave identically
to bc-askI until the point at which bc-askI encounters a goal for which it needs to make a remote
request ([11i]). At this point, bc-askD will construct a marker ([9d]) containing the same parameters
as bc-askI would use to make the remote request.

Since bcD exhaustively investigates all markers ([7bcd]), it will investigate the marker described
above. Thus, bcD will make a remote request with identical parameters to the request made by
bc-askI , which, by the assumption of this lemma, will return the same result under both strategies.

Step 2: By inspection of bc-askD (in particular, [18d] and [23d]), we can see that all credentials used in a
proof of a goal are returned when the query terminates. Thus, when a remote request for a goal f

([9bcd]) returns with a complete proof, the response will include all of the credentials necessary to
re-derive that proof. These credentials are added to the knowledge base on [11bcd], so from Lemma 3
we can conclude that the local prover can now generate a complete proof of f .

We refer to the invocation of bc-askD that constructed the marker in Step 1 as M . When bcD re-runs
the entire query ([12bcd]), bc-askD will retrace its steps to M . Since new credentials have been added
to the knowledge base, bc-askD may first explore additional branches, but because it is exhaustive and
deterministic, it will eventually explore the same branch as the first query. Upon reaching M , bc-askD

will first construct a remote marker identical to the one produced in the first round ([9d]), but, since
bcD repeatedly invokes bc-askD until a either complete proof has been found or no more markers
exist, bc-askD will be invoked again with that marker in failures ([12bcd]). This time, bc-askD will
attempt to prove the first(goals) ([11d]), and having sufficient credentials, will generate the same proof
([14d] or [19d]) as was returned by the remote request. Note that it is possible to generate alternative
proofs first, but the combination of bcD repeatedly invoking bc-askD ([12bcd]) with previous solutions
included in failures and the loops on [11d] and [19d] ensures that the solution identical to the result
of the remote request is eventually found.

Step 3: From Step 2, we know that bc-askD finds the same proof of first(goals) as bc-askI does. In the
case where first(goals) is provable directly from a credential, this means that [17d].φ = [13i].α In the
case where first(goals) is not provable directly from a credential, [22d].β = [13i].α. In either case,
rest(goals) and failures are identical to those of invocation M , which, in turn, is effectively identical
to the invocation of bc-askI that made the remote request for which M constructed a marker. At
this point, we have shown that all parameters to the recursive bc-askD call (either [17d] or [22d]) are
identical to those of [13i].

The knowledge base KB ′ used by bc-askD was initially identical to the knowledge base KB used
by bc-askI . However, bcD added the credentials returned by the remote request to KB ′ ([11bcd]),
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resulting in a KB ′ such that KB ⊂ KB ′. By Lemma 3, we can conclude that bc-askD will eventually
find the same proof using KB ′ as it finds using KB . Thus, if we can prove Lemma 5 when bc-askD

uses KB , the result will hold when bc-askD uses KB ′. From the previous paragraph, we know that
all parameters to the recursive bc-askD call (either [17d] or [22d]) are identical to those of [13i], and
from this paragraph, we can conclude that the knowledge base in use by bc-askD is identical to that
of bc-askI .

The proof created in the inline strategy on [13i] must be completable with r − 1 remote requests,
as one remote request has already been made. At this point, we can apply our induction hypothesis
to show that either [17d].answer = [13i].answer or [22d].answer = [13i].answer . From this and
inspection of [18d], [23d], and [14i], it is clear that bc-askD will find a proof if bc-askI is able to find
a proof. 2

Theorem 3 For any goal G, a delayed distributed prover with global knowledge base KB will find a proof
of G if an inline distributed prover using KB will find a proof of G.

Proof We first define the remote request height h of a proof to be the recursion height of the algorithm with
respect to remote requests. For example, if A asks B and C for help, and C asks D for help, the remote
request height of A’s query is 2.

We are trying to show that bcD (which invokes bc-askD) will produce a complete proof if bc-askI

produces a complete proof. We prove Theorem 3 by induction over the remote request height of the proof.
Our induction hypothesis states that if bc-askI and bcD are invoked with parameters P (which include goal
G), and bc-askI finds a proof of G with remote request height at most h, bcD will find a proof of G as well.
Base Case: The base case occurs when h = 0. Since this corresponds to the case where bc-askI does not
make any remote requests, we can apply Lemma 4 to conclude that bcD will produce a proof if bc-askI

produces a proof.
Inductive Case: For the inductive case, we note that any remote requests made by bc-askI operating at
request height h +1 must have height at most h. Lemma 5 proves that bcD will find a proof of G if bc-askI

finds a proof of G under the assumption that any remote request made by bcD with parameters P will return
the same result as a remote request made by bc-askI with parameters P . Since any remote requests must
have height at most h, we can apply our induction hypothesis to discharge the assumption of Lemma 5
which allows us to conclude that bcD will find a proof if bc-askI finds a proof with request height h + 1. 2

C Completeness of LR Tactics

IR and LR are both tactic sets that are used in a common distributed proving framework, which we will
refer to as DP. This framework, formed by the combination of bc-askD (Figure 3) and bcD (Figure 14), is
responsible for identifying choice subgoals, determining if the formula under consideration can be proved
either directly from cache or by recursively applying tactics. We assume that all tactics and inference rules
are encoded such that their premises are proved from left to right. In any situation where IR must use a depth
limit to ensure termination (rather than for efficiency), we assume that LR uses the same depth limit.4

For simplicity, when referencing the version of the distributed proving framework that uses IR tactics,
we will simply write IR. We write LR to refer to a version of the distributed proving framework that uses LR

tactics in conjunction with FC and PC.

4In practice, we have not encountered a situation in which a depth limit was necessary for LR.
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Lemma 6 Consider the case in which IR is given the query A says F and each of the first series of recursive
bc-askD calls made by IR is an application of a delegation rule for which the left premise is provable, and
the next recursive bc-askD call by IR is to prove B says F . If LR is also given query A says F , LR will
eventually attempt to prove B says F .

Proof sketch If the first r recursive bc-askD calls made by IR are applications of a delegation rule for
which the first premise is provable, and the (r + 1)’th recursive bc-askD call ([17d], [22d]) by IR is to prove
B says F , then it must be true that B says F ⊃ A says F . From Theorem 2, we know that the path
(B says F,A says F ) is in the knowledge base. Since LR has a left tactic whose conclusion is either equal
to, or more general than, the conclusion of the delegation rule that was applied by IR in the rth recursive
call, LR will use this tactic to exhaustively try all paths whose conclusion unifies with A says F and attempt
to prove the premise of each such path. Eventually, LR will try the path (B says F,A says F ), and attempt
to prove B says F . 2

Lemma 7 If IR finds a proof of F with marker m using knowledge base KB , a version of IR with cycle
prevention will also find a proof of F with marker m using KB .

Proof sketch As defined in Section 7, we refer to the version of IR with cycle prevention as IR-NC. We
define a cycle to exist if a prover attempts to prove formula F as part of the recursive proof of F . In this
case, when IR attempts to prove F , it will apply a sequence of inference rules that lead it to attempt to prove
F again. As repeated applications of bc-askD may only decrease the generality of a substitution θ ([13d]),
the subsequent attempt to prove F will be with a θ that is more specific than the initial attempt. Additionally,
the substitutions present in failures accumulate as bc-askD recurses ([16d], [20d]) . From this, we know that
the subsequent attempt to prove F will do so in an environment that is strictly more restrictive (more specific
θ, more substitutions in failures ). Thus, if IR finds a proof of F on the subsequent attempt, we can conclude
that a proof of F can be found on the initial attempt. Since the only difference between IR-NC and IR is that
IR-NC eliminates cycles, IR-NC will be restricted to finding a proof of F on the initial attempt. Since we
have shown that IR is capable of finding a proof of F on the initial attempt if it is able to find a proof on the
subsequent attempt, we can conclude that IR-NC will find a proof of F on the initial attempt as well. 2

Lemma 8 If both IR and LR invoke bc-askD with identical parameters and IR finds a complete proof from
local knowledge, then LR will find a complete proof from local knowledge as well.

Proof Since DP will not automatically make any remote requests, if IR finds a complete proof of goal
A says F , then there is a series of inference rules that, when applied to a subset of the locally known
credentials, produces a proof of A says F . Theorem 1 shows that FC produces a proof of each formula for
which a proof is derivable from locally known credentials, so a proof of A says F will be found by DP and
returned immediately before any LR tactics are applied. 2

Lemma 9 If both IR and LR invoke bc-askD with identical parameters, and if IR finds a proof with marker
m then LR will find a proof with marker m.

Proof We define the depth of a proof to be the depth of the tree that represents the series of inference rules
that, when applied to the original goal, constitute a proof of the goal. To prove Lemma 9, we use induction
over the depth d of the proof found by IR. Our induction hypothesis is that if both IR and LR invoke bc-askD

with identical parameters, Lemma 9 will hold for proofs with depth at most d.
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Base case: The base case occurs when d = 0. Since Lemma 9 assumes that bc-askD does not return a
complete proof, we know that the base case represents the creation of a marker. This is handled by DP in a
way that is independent of the tactic set.
Inductive case: For the inductive case, let the formula that IR and LR are attempting to prove be A says F .
The proof of A says F that IR is able to find has depth d + 1 and contains marker m.

Let ((P = p1 ∧ . . . ∧ pj), q) represent the first inference rule applied to A says F by IR. This rule is
either a delegation rule or a standard (i.e., non-delegation) rule. Since the only manner in which IR and LR

differ is in the rules dealing with delegation, if (P, q) is a standard rule, LR will apply this rule during the
course of an exhaustive search. At this point, both IR and LR will attempt to prove all formulas in P . The
proofs of these formulas can have depth at most d, so we can apply our induction hypothesis to show that
LR will find a proof with marker m for this case.

If (P, q) represents a delegation rule, then P will consist of two formulas, pl and pr. If IR finds a proof
of q = A says F with marker m, then either (a) the proof of pl contains m, or (b) pl is provable from local
knowledge and the proof of pr contains m.

(a) Here we note that if IR finds a proof of pl with marker m, then we can apply Lemma 7 to conclude that
IR-NC finds a proof with marker m as well. The right tactic of LR differs from the corresponding
inference rule in IR-NC only in that LR requires that pl not be provable from local knowledge (as
described in Section 6.2). Thus, if IR-NC investigates pl, LR will apply a right tactic and investigate
pl as well. Since the proof of pl found by IR can have depth at most d, we can apply our induction
hypothesis to show that LR will find a proof of pl containing marker m in this case.

(b) If pl (the premise pertaining to delegation) is provable, then when LR applies a left tactic, we can
apply Lemma 6 to show that both IR and LR will ultimately investigate the same right subgoal (e.g.,
B says F ). The proof of this subgoal must have depth at most d, so we can apply our induction
hypothesis to to show that LR will find a proof with marker m in this case. 2

Theorem 4 If IR finds a proof of goal F , then LR will find a proof of F as well.

Proof sketch We prove Theorem 4 by induction over the recursion height (see Definition 2) of bcD. Our
induction hypothesis states that at recursion height h, any recursive call to bcD with environment ε made by
LR will return a proof if a recursive call to bcD with environment ε made by IR returns a proof.
Base case: The base case occurs when the recursion height = 0. Since recursion of bcD occurs only when
a proof involving a marker is found, we can conclude that, if IR tactics are able to find a complete proof,
bc-askD will return a proof that does not include a marker ([3bcd]). We can apply Lemma 8 to conclude
that, when using LR tactics, bc-askD will also return a proof.
Inductive case: For the inductive case, we let h+1 be the recursion height of the current invocation of bcD.
bcD recurses on [12bcd] only if the proof returned by bc-askD ([3bcd]) contained a marker indicating that a
remote request is necessary. From Lemma 9, we know that the marker returned by LR will be the same as
the marker returned by IR. From this, we know that the remote request made by bcD on [9bcd] will have the
same parameters in both the LR and IR scenarios. If we momentarily assume that the remote request returns
the same response in both scenarios, then we can show that each of the parameters of the recursive call on
[12bcd] in the LR scenario are the same as those of the IR scenario. Since the recursive call on [12bcd] must
have height at most h, then we can apply our induction hypothesis to conclude that bcD will return find a
proof using LR tactics if it is able to find one using IR tactics.
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We now return to the assumption that remote requests made with the same environment in both scenarios
will return the same result. This assumption can be relaxed via a proof that inducts over the remote request
height of the distributed prover. This proof is analagous to that of Theorem 3. 2
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