Computational Methods for Distributed Controller Design in the Smart Grid

J. Zico Kolter
School of Computer Science
Carnegie Mellon University

Joint work with Matt Wytock

February 5, 2014
Recent and ongoing projects

- Energy disaggregation
- Probabilistic power forecasting
- Learning micro wind turbine control
- City-level energy modeling and visualization
- Fast algorithms for decentralized wide area power control

- Residential energy data collection
Recent and ongoing projects

- Energy disaggregation
- Learning micro wind turbine control
- City-level energy modeling and visualization
- Residential energy data collection
- Fast algorithms for decentralized wide area power control
- Probabilistic power forecasting
From big data to big control

Big Data

Many data points
Many features
High data velocity
From big data to big control

Big Data
- Many data points
- Many features
- High data velocity

Big Control
- Big data +
- Many decisions
- Fast dynamics
- Communication limits

Sparsity:
- Simpler models
- Learn relevant structure
- Faster computation
- Simpler communication
- Fixed structure
- Computation?
From big data to big control

Big Data

Many data points
Many features
High data velocity

Sparsity:
Simpler models
Learn relevant structure
Faster computation

Big Control

Big data +
Many decisions
Fast dynamics
Communication limits

This work: towards bringing CS big data approaches into the computational side of control
From big data to big control

Big Data
- Many data points
- Many features
- High data velocity

Sparsity:
- Simpler models
- Learn relevant structure
- Faster computation

Big Control
- Big data +
- Many decisions
- Fast dynamics
- Communication limits

Sparsity:
- Simpler communication
- Fixed structure
- Computation?

This work: towards bringing CS big data approaches into the computational side of control
From big data to big control

Big Data
- Many data points
- Many features
- High data velocity
- **Sparsity:**
 - Simpler models
 - Learn relevant structure
 - Faster computation

Big Control
- Big data $+$
- Many decisions
- Fast dynamics
- Communication limits
- **Sparsity:**
 - Simpler communication
 - Fixed structure
 - Computation?

This work: towards bringing CS big data approaches into the computational side of control
Wide area control of power systems

\[
x = \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \\ \theta_2 \\ \dot{\theta}_2 \end{bmatrix}, \quad u = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}
\]
Wide area control of power systems

\[x = \begin{bmatrix} \theta_1 \\ \dot{\theta}_1 \\ \theta_2 \\ \dot{\theta}_2 \end{bmatrix}, \quad u = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} \]

\[K = \begin{bmatrix} \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \end{bmatrix} \quad \bullet = \text{“local” control} \\
\begin{bmatrix} \bullet & \bullet & \bullet & \bullet \end{bmatrix} \quad \bullet = \text{“wide area” control}
Decentralized control

- Huge area of research dating back to 60s: linear decentralized control known to be suboptimal (Wittenhausen, 1962); survey of early work (Sandell Jr. et al., 1978)

- Non-convex for typical control objectives (\mathcal{H}_2, \mathcal{H}_∞)

- A great deal of interest in recent years: special systems (e.g., quadratic invariance) where optimal decentralized control is sparse (Rotkowitz and Lall, 2006); convexifications using different control objectives (Dvijotham et al., 2013) or restricted Lyapunov functions (Schuler et al., 2013); non-convex optimization and ℓ_1 penalty (Lin et al., 2013)

- But, virtually no large-scale algorithms
Problem setup (following Lin et al., 2013)

• Continuous time linear dynamical system

\[\dot{x}(t) = Ax(t) + Bu(t) + W^{1/2}\epsilon(t) \]

• LQR/\(H_2\) objective for state feedback controller \(u(t) = Kx(t)\)

\[J(K) = \lim_{T \to \infty} \frac{1}{T} \int_0^T (x(t)^T Q x(t) + u(t)^T R u(t)) \, dt \]

\[= \begin{cases}
\text{tr} \, PW & A + BK \text{ stable} \\
\infty & \text{otherwise}
\end{cases} \]

\[(A + BK)^T P + P(A + BK) + Q + K^T R K = 0 \]

• Optimization objective with \(\ell_1\) term

\[\min_{K} J(K) + \lambda \| K \|_1 \]

(a difficult optimization problem)
Computational challenges

• Taking inspiration from sparse big-data methods: Newton Coordinate Descent approaches (e.g. Hsieh et al., 2011, Tseng and Yun, 2009)

• Iteratively form quadratic approximation and minimize over search direction Δ

$$\text{tr}(\nabla_{K} J(K))^T \Delta + \text{vec}(\Delta)^T (\nabla_{K}^2 J(K)) \text{vec}(\Delta) + \lambda \| K + \Delta \|_1$$

where this step can exploit recent advances in fast ℓ_1 optimization

• But, Hessian products in particular are computationally intensive; majority of the work focuses on bringing this from $O(n^3) \rightarrow O(n)$
Power system wide area control

NPCC 48 machine, 140 bus system (Chow et al, 1995)
24 machines equipped with exciters and turbine governors, $n = 242$
Wide area control for 48 machine NPCC system ($n = 242$)
Wide area control for 48 machine NPCC system ($n = 242$)
Wide area control for 48 machine NPCC system \((n = 242)\)
Wide area control for 48 machine NPCC system \((n = 242)\)
NPCC 48 machine system

Plot of controller sparsity
NPCC 48 machine system

Eigenvalues and regulation of initial / wide area control systems
Recent and ongoing projects

- **Energy disaggregation**
- **Probabilistic power forecasting**
- **Learning micro wind turbine control**
- **City-level energy modeling and visualization**
- **Residential energy data collection**
- **Fast algorithms for decentralized wide area power control**