15-740/18-740
Computer Architecture
Lecture 0: Announcements/Logistics

Prof. Onur Mutlu
Carnegie Mellon University
Summary

- First lecture: September 8 (Wed)

- Homework 0 – Part 1
 - Due September 8 (Wed)

- Homework 0 – Part 2
 - Due September 10 (Fri)

- First readings
 - Reviews due September 10

- Project ideas and groups
 - Read, think, and brainstorm
 - Proposal due September 27
Agenda

- Syllabus
 - Course logistics, info, requirements

- Homework 0

- Readings for first lecture
Course Info: Who Are We?

- Instructor: Prof. Onur Mutlu
 - onur@cmu.edu
 - Office: Hamerschlag Hall-A305
 - Office Hours: W 2:30-3:30pm (or by appointment)
 - http://www.ece.cmu.edu/~omutlu
 - PhD from UT-Austin, worked at Microsoft Research, Intel, AMD
- Research:
 - Computer architecture
 - Many-core systems: shared resources, asymmetric multi-core
 - Memory systems
 - Interconnection networks
 - Hardware/software interaction and co-design
 - Fault tolerance
 - Hardware security
 - Algorithms and architectures for genomics
Course Info: Who Are We?

- **Teaching Assistants**
 - Vivek Seshadri
 - GHC 7517
 - vseshadr@cs.cmu.edu
 - Evangelos Vlachos
 - HH A312
 - evlachos@ece.cmu.edu
 - Office hours TBD

- **Course Administrative Assistant**
 - Bara Ammoura
 - bammoura@ece.cmu.edu
Where to Get Up-to-date Course Info?

- Website: http://www.ece.cmu.edu/~ece740

- Blackboard: Linked from website
 - Lecture notes
 - Readings
 - Project info
 - Discussion boards – share information

- Your email

- Me and the TAs
What Will You Learn?

- **Computer Architecture:** The science and art of designing, selecting, and interconnecting hardware components and designing the hardware/software interface to create a computing system that meets functional, performance, energy consumption, cost, and other specific goals.

- **Traditional definition:** “The term *architecture* is used here to describe the attributes of a system as seen by the programmer, i.e., the conceptual structure and functional behavior as distinct from the organization of the dataflow and controls, the logic design, and the physical implementation.” *Gene Amdahl*, IBM Journal of R&D, April 1964
Levels of Transformation

- Problem
- Algorithm
- Programs

User

Runtime System (VM, OS, MM)
- ISA
- Microarchitecture
- Circuits/Technology
- Electrons
What Will You Learn?

- Hardware/software interface and major components of a modern microprocessor
 - State-of-the-art as well as research proposals
 - Tradeoffs and how to make them
 - Emphasis on cutting-edge research

- Hands-on research in a computer architecture topic
 - Semester-long project
 - How to design better architectures (not an intro course)

- How to dig out information
 - No textbook really required
 - But, see the syllabus
An Example: Multi-Core Systems

*Die photo credit: AMD Barcelona
Unexpected Slowdowns in Multi-Core

![Graph showing memory performance slowdowns for Matlab (Core 0) and GCC (Core 1). Matlab has a slowdown of 1.07, while GCC has a slowdown of 3.04. The graph indicates that GCC has a memory performance hog, with high priority on Core 1.]
Why the Disparity in Slowdowns?

Multi-Core Chip

Shared DRAM Memory System

unfairness
What Do I Expect From You?

- Required background: basic architecture (18-447), basic compilers, basic OS, programming

- Learn the material
 - And, research it

- Do the work & work hard

- **Ask questions, take notes**

- Read and review the assigned research papers & readings
 - Discuss/critique them online with peers and us
 - Write your critique/review online

- Study in groups, but submit your own work

- **Start early and focus on the research project**

- If you want feedback, come to office hours
How Will You Be Evaluated?

- Homeworks, Online Reviews, Quizzes: 10%
- Research Project: 35%
- Midterm I: 20%
- Midterm II (comprehensive): 35%
- Our evaluation of your performance: 5%
- Participation+discussion counts
More on Homeworks and Policy

- Content from lectures, readings, project, discussions
- All homeworks *must* be your own work

- Research project in groups

- Late policy: Maximum five late days total

- Honor code: No tolerance on cheating, academic dishonesty
 - See syllabus
Research Project

- Your chance to explore in depth a computer architecture topic that interests you
- Perhaps even publish your innovation in a top computer architecture conference.

- Start thinking about your project topic from now!
- Interact with me and Evangelos & Vivek

- Groups of 2-3 students (will finalize this later)
- Proposal due: Sep 27
Homework 0

- **Part 1**
 - Our way of getting to know about you fast
 - Due Sep 8

- **Part 2**
 - Four readings
 - One cache question
 - Due Sep 10

- **Paper Reviews**
 - Write *brief* reviews online for the four readings
 - Key ideas, strengths, weaknesses, challenges, what did you learn? Are the statements valid, interesting, exciting?
 - Due Sep 10
Summary

- First lecture: September 8 (Wed)
- Homework 0 – Part 1
 - Due September 8 (Wed)
- Homework 0 – Part 2
 - Due September 10 (Fri)
- First readings
 - Reviews due September 10
- Project ideas and groups
 - Read, think, and brainstorm
 - Proposal due September 27