Today

- (finish up) Influence directed explanations
- Explanations overview
- Linear vs non-linear models / coding practice
Influence Directed Explanations
Influence Directed Explanations

- Input Influence: Saliency, Integrated Gradients, many others

- Use input influence with a quantity of interest that selects a particular internal neuron
Influence-Directed Explanations for CNNs
Explanations Overview
Explanations Overview

• Covered
 – [Link](#) Representer point selection for DNN
 – [Link](#) Understanding Black-box Predictions via Influence Functions
 – [Link](#) Axiomatic Attribution for Deep Networks
 – [Link](#) Influence-Directed Explanations for CNNs

• Categorize methods on
 – Explanation of ...
 – Explanation form
 – Requirements
 – Evaluations
 – Strengths, weaknesses
Explanations of ...

• Prediction $F(X) = Y$
• Class Score $F(X) = Y$, explain Y_c
• Quantity of Interest $q(F(X)) = 1$
Form / Interpretation

• Shadow interpretable model.
 – Global shadow.
 – Local linear model.
• Input’s (pixels) importance on score
 – Distributions of interest
• Input’s (pixels) importance on QoI
• Training instances’ importance on score
• Input’s importance on “experts”
 – Distributions of interest
Requirements

• Model requirements
 – (optimal/convex)
• Training dataset
• Test instances
• Computational power
Evaluations (was explanation good?)

• Subjective (human, typically the author) evaluation.
• Usefulness
• Objective
 – Compression
 – Ablation
Strengths / Weaknesses

• Requirements
 – Computational power
 – Scalability vs dataset
 • Test instance

• Objective evaluation

• Implementation invariance
 – Interpretation

• Hyperparameters
 – Baselines

• Approximations for requirements
Linear vs. Non-linear models
Linear score function

\[f(x_i, W, b) = Wx_i + b \]

- \(x_i \) input image
- \(W \) weights
- \(b \) bias

Learning goal:
Learn weights and bias that minimize loss
Using score function

Predict class with highest score
Linear classifiers as hyperplanes
Acknowledgment

• Based on material from
 – Stanford CS231n http://cs231n.github.io/
 – Spring 2019 Course