Course Overview

Spring 2020
Today

- Goals
- Modules
- Prerequisites
- Logistics
- Grading
- Policies
Course staff

- **Instructor: Piotr (Peter) Mardziel**
 - Email: piotr.m@cmu.edu
 - Office hours: Thursdays 12-1pm Pacific
 - Office: B23 114

- **TA: Zifan Wang**
 - Email: zifan.wang@sv.cmu.edu
 - Office hours: Wednesdays 2:30-3:30pm Eastern
 - Office: CIC 2206

- **TA: Caleb Lu**
 - Email: kaijil@andrew.cmu.edu
 - Office hours: TBD
 - Office: TBD

- **Office hours available remotely:**
 - Zoom meeting links on website
Continuing successes of deep learning
Image classification

What the computer sees

82% cat
15% dog
2% hat
1% mug
NLP: translation, etc.
Deep neural networks learn representations

Deeper layers learn progressively more abstract representations:
- pixels, edges, motifs, parts of objects, objects
Enabling trends

- Large volumes of training data
- Computation power
 - GPUs,...
Course objective

Understand deeply how and why deep networks work and their weaknesses

Become informed: what can go wrong (other than poor performance)?
Course modules

1. Fundamentals of deep learning
2. Explanations for deep learning
3. Security of deep learning
4. Privacy and Fairness in deep learning
Course modules

1. Fundamentals of deep learning
 - Background on machine learning
 - Architectures, training, platforms
 - Focus on convolutional and recurrent neural networks
Course modules

2. Explanations for deep learning
 • Feature importance and visualization
Course modules

3. Security of deep learning models
 • Attacks on classifiers and defenses
Course modules

4. Privacy and Fairness in deep learning
 • Inferring sensitive information
 • Bias and de-biasing
Course Format

• Lectures covering the background
 • Stanford CS231n (Convolutional Neural Networks for Visual Recognition)
 • Deep Learning textbook

• 1-2 Lecture covering software tools and setup
 • Numpy, Tensorflow, Keras, Jupyter Notebook, Google Computing Services

• Lectures covering research papers
 • Occasionally guest lecturers
Prerequisites

• No formal prerequisites

• Basics of linear algebra, probability, multivariate calculus
 • Will review briefly in class and provide resources to learn on your own
 • Roughly Chapters 1-5 of *Deep Learning* textbook by Goodfellow et al.

• Familiarity with Python
 • Necessary for programming homework

• Quick class poll
Logistics

• Lectures: Tue & Thur, 10:30-11:50am Pacific / 1:30-2:50pm Eastern
• Web page: http://www.ece.cmu.edu/~ece739/
• Gradescope (assignment submission)
• Canvas (grades)
• Piazza (announcements, for all other communication)

• Textbook
 • Deep Learning textbook by Goodfellow, Bengio, Courville
Grading

• Homework: 90%
 • 5 x 18%

• Class participation: 10%
 • Be present and engaged in class and piazza
 • Informed questions for guest lecturers
Collaboration policy on homework

• You are allowed/encouraged to discuss homework problems with other students in the class but are required to write out solutions independently and to acknowledge any collaboration or other source. If you are unsure about something, consult the course staff.

CMU Computing Policy
CMU Policy on Cheating
Acknowledgment

• Based on material from
 • Spring 2019 Course