Bootstrapping Privacy Compliance in Big Data Systems

Anupam Datta
CMU

Fall 2018
Privacy Compliance for Bing

Setting:

- Auditor has access to source code
The Privacy Compliance Challenge

Legal Team
Crafts Policy

Privacy Champion
Interprets Policy

Developer
Writes Code

Audit Team
Verifies Compliance

English Privacy Policy
Compliant?

Millions of Lines of Undocumented Code
A Streamlined Audit Workflow

Legal Team
Crafts Policy
Interprets Policy

Developer annotations
Code analysis

Grok
Data inventory with policy labels

Annotated Code
Update Grok

Legalease
A formal policy specification language

Encode
Refine

Potential violations

Checker

Annotated Code
Legalease Policy

Fix code

Audit Team
Verifies Compliance
A Streamlined Audit Workflow

Workflow for privacy compliance

Legalease, usable yet formal policy specification language

Grok, bootstrapped data inventory for big data systems

Scalable implementation for Bing
Privacy as Restrictions on Personal Information Flow

Direct Interference

Interference

Probabilistic Interference

Differential Privacy

Purpose & Role based Restrictions

Temporal Restrictions

EPAL
XACML
*-access control

Purpose → Planning

Jif, FlowCaml,…

Information Flow Experiments

Differential Privacy

FOTLs
[Formal Contextual Integrity, Reduce audit algorithm, Basin et al.]

Grok + Legalease

[Hayati & Abadi]
A Streamlined Audit Workflow

Legal Team
Crafts Policy

Privacy Champion
Interprets Policy

Legalease
A formal policy specification language

Grok
Data inventory with policy datatypes

Code analysis, developer annotations

Developer
Writes Code

Audit Team
Verifies Compliance

Fix code

Refine

Encode

Annotated Code

Update Grok

Potential violations

Legalease Policy

Update Grok
Specification: Legalease

Usable by lawyers and privacy champs.

Expressive enough for real-world policies.

Precise semantics for local reasoning.
Legalease : Syntax

Policy Clause C ::= $D \mid A$
Deny Clause D ::= DENY $T_1 \cdots T_n$ EXCEPT $A_1 \cdots A_m$
\hspace{1em}DENY $T_1 \cdots T_n$
Allow Clause A ::= ALLOW $T_1 \cdots T_n$ EXCEPT $D_1 \cdots D_m$
\hspace{1em}ALLOW $T_1 \cdots T_n$
Attribute T ::= \langleattribute-name\rangle $v_1 \cdots v_l$
Value v ::= \langleattribute-value\rangle
We will **not** use **full IP Address** for **Advertising**.
We will not use full IP Address for Advertising. IP Address may be used for detecting abuse. In such cases, it will not be combined with account information.
DENY Datatype IPAddress
UseForPurpose Advertising
EXCEPT
ALLOW Datatype IPAddress:Truncated
ALLOW UseForPurpose AbuseDetect
EXCEPT
DENY Datatype IPAddress,AccountInfo

Exceptions
How legal texts are structured
One-to one correspondence

Local Reasoning
Each exception refines its immediate parent
Formally proven property

H. DeYoung, D. Garg, L. Jia, D. Kaynar, and A. Datta, “Experiences in the logical specification of the HIPAA and GLBA privacy laws”
We will not use full IP Address for Advertising. IP Address may be used for detecting abuse. In such cases, it will not be combined with account information.
A Lattice of Policy Labels

- If “IPAddress” use is allowed then so is everything below it
- If “IPAddress:Truncated” use is denied then so is everything above it
Designed for Precision

\[
\frac{T^G \not\subseteq T^C}{\text{ALLOW } T^C \text{ EXCEPT } D_1 \cdots D_m \text{ denies } T^G} \quad (A_1)
\]

\[
\frac{T^G \subseteq T^C \quad \exists_i D_i \text{ denies } T^G}{\text{ALLOW } T^C \text{ EXCEPT } D_1 \cdots D_m \text{ denies } T^G} \quad (A_2)
\]

\[
\frac{T^G \subseteq T^C \quad \forall_i D_i \text{ allows } T^G}{\text{ALLOW } T^C \text{ EXCEPT } D_1 \cdots D_m \text{ allows } T^G} \quad (A_3)
\]

\[
\frac{\bot \in T^G \cap T^C}{\text{DENY } T^C \text{ EXCEPT } A_1 \cdots A_m \text{ allows } T^G} \quad (D_1)
\]

\[
\frac{\bot \notin T^G \cap T^C \quad \exists_i A_i \text{ allows } T^G \cap T^C}{\text{DENY } T^C \text{ EXCEPT } A_1 \cdots A_m \text{ allows } T^G} \quad (D_2)
\]

\[
\frac{\bot \notin T^G \cap T^C \quad \forall_i A_i \text{ denies } T^G \cap T^C}{\text{DENY } T^C \text{ EXCEPT } A_1 \cdots A_m \text{ denies } T^G} \quad (D_3)
\]

TABLE I
Grammars for Legalease

TABLE III
Inference Rules for Legalease
Designed for Expressivity (Bing, October 2013)

ALLOW
EXCEPT

DENY DataTypes IPaddress:Expired
DENY DataTypes UniqueIdentifier:Expired
DENY DataTypes SearchQuery, PII InStore Store
DENY DataTypes UniqueIdentifier, PII InStore Store

DENY DataTypes BBEPData UseForPurpose Advertising

DENY DataTypes BBEPData, PII InStore Store

DENY DataTypes BBEPData:Expired

DENY DataTypes UserProfile, PII InStore Store

DENY DataTypes PII UseForPurpose Advertising
DENY DataTypes PII InStore AdStore

DENY DataTypes SearchQuery UseForPurpose Sharing
EXCEPT
ALLOW DataTypes SearchQuery Scrubbed

"we remove the entirety of the IP address after 6 months"
"[we remove] cookies and other cross session identifiers, after 18 months"
"We store search terms (and the cookie IDs associated with search terms) separately from any account information that directly identifies the user, such as name, e-mail address, or phone numbers."
"we do not use any of the information collected through the Bing Bar Experience Improvement Program to identify, contact or target advertising to you"
"we take steps to store [information collected through the Bing Bar Experience Improvement Program] separately from any account information we may have that directly identifies you, such as name, e-mail address, or phone numbers"
"we delete the information collected through the Bing Bar Experience Program at eighteen months."
"we store page views, clicks and search terms used for ad targeting separately from contact information you may have provided or other data that directly identifies you (such as your name, e-mail address, etc.)."
"our advertising systems do not contain or use any information that can personally and directly identify you (such as your name, email address and phone number)."
"Before we [share some search query data], we remove all unique identifiers such as IP addresses and cookie IDs from the data."
Designed for Expressivity (Google, October 2013)

ALLOW
EXCEPT
 DENY DataType PII UseForPurpose Sharing

EXCEPT
 ALLOW DataType PII:OptIn
EXCEPT
 ALLOW AccessByRole Affiliates
EXCEPT
 ALLOW UseForPurpose Legal

DENY DataType DoubleClickData, PII
EXCEPT
 ALLOW DataType DoubleClickData, PII:Optin

“we do not share personal information with companies, organizations and individuals outside of Google unless one of the following circumstances apply:”
“we require opt-in consent for the sharing of any sensitive personal information.”
“we provide personal information to our affiliates or other trusted businesses or persons to process it for us”
“we will share personal information [if necessary to] meet any applicable law, regulation, legal process or enforceable governmental request.”
“we will not combine DoubleClick cookie information with personally identifiable information unless we have your opt-in consent”
Legalease Usability

Survey taken by 12 policy authors within Microsoft Encode Bing data usage policy after a brief tutorial

Time spent
2.4 mins on the tutorial
14.3 mins on encoding policy

High overall correctness
A Streamlined Audit Workflow

Legal Team
Crafts Policy

Encode

Privacy Champion
Interprets Policy

Refine

Legalease
A formal policy specification language

Grok
Data inventory with policy labels

Code analysis
Developer annotations

Annotated Code

Checker

Update Grok

Potential violations

Audit Team
Verifies Compliance

Fix code

Developer
Writes Code
A Streamlined Audit Workflow

Legal Team
Crafts Policy

Encode

Privacy Champion
Interprets Policy

Refine

Legalease
A formal policy specification language

Grok
Data inventory with policy labels

Code analysis, developer annotations

Checker

Annotated Code

Legalease Policy

Potential violations

Update Grok

Develop Team
Writs Code

Audit Team
Verifies Compliance

Fix code
Map-Reduce Programming Systems

Scope, Hive, Dremel

Data in the form of Tables

Code Transforms Columns to Columns

No Shared State
Limited Hidden Flows

users =
 SELECT _name, _age FROM datasetAB
user_tag =
 SELECT GenerateTag(_name, _age)
 FROM users
OUTPUT user_tag TO datasetC
Grok
Grok

Purpose Labels
Annotate programs with purpose labels
Grok

Purpose Labels
Annotate programs with purpose labels

Initial Data Labels
Heuristics and Annotations

users = SELECT Name, Age FROM datasetAB
user_tag = SELECT GenerateTag(_name, _age)
FROM users
OUTPUT user_tag TO datasetC

Name Age IPAddress IDX

GeoIP

Country

IDX

Login

Timestamp

Hash

Check Hijack

Check Fraud

Reporting
Flow Labels
Source labels propagated via data flow graph

D. E. Denning. “A lattice model of secure information flow”
A Lattice of Policy Labels

- If “Profile” use is allowed then so is everything below it
- If “Name” use is denied then so is everything above it
Implicit flows

Beyond direct flows discussed in healthcare audit examples
Map-Reduce

Map
- Operate on rows in parallel
 - eg. filtering

Reduce
- Combine groups of rows
 - eg. aggregation

```
users =
SELECT Name, Age
FROM datasetAB

users_35 =
SELECT _name, _age
FROM users
WHERE (_age > 35)

ages_35 =
SELECT _age, COUNT(_name) AS Profile
FROM users_35
GROUP BY _age

OUTPUT ages_35 TO datasetC
```
Combine Noisy Sources

- Carefully curated regular expressions
- Leverages developer conventions
- Significant Noise

-Variable Name Analysis

- Expensive
- Low Noise

- Developer Annotations

- Very Expensive
- Definitive
- Need very few of these

-auditor verification
Why Bootstrapping Grok Works

Pick the nodes which will label the most of the graph

~200 annotations label 60% of nodes

A small number of annotations is enough to get off the ground.
Scale

- 77,000 jobs run each day
 - By 7000 entities
 - 300 functional groups
- 1.1 million unique lines of code
 - 21% changes on avg, daily
 - 46 million table schemas
 - 32 million files
- Manual audit infeasible
- Information flow analysis takes ~30 mins daily

Fig. 9. Number of Grok data flow graph nodes added each day
Nightly Compliance Process

Static code analysis

Generate report

Manual Audit

files 23M+

schemes

privacy candidates 300K+

teams 8

32
A Streamlined Audit Workflow

Legal Team
Crafts Policy
Encode

Privacy Champion
Interprets Policy
Refine

Legalease
A formal policy specification language

Grok
Data inventory with policy labels
Annotated Code
Update Grok
Potential violations

Developer
Writes Code
Fix code

Audit Team
Verifies Compliance
Legalease Policy
Annotated Code
A Streamlined Audit Workflow

Workflow for privacy compliance

Legalease, usable yet formal policy specification language

Grok, bootstrapped data inventory for big data systems

Scalable implementation for Bing
Reference

Next week

- Monday – guest lecture on recent privacy laws
- Wednesday – tracking labels in programs
Policy Labels : Datatypes

Going down within a lattice:

- finer specification

TypeState specifies limited temporal properties.
Policy Types: Concept Lattices

InStore Lattice

UseForPurpose Lattice

AccessByRole Lattice
Formal Semantics

$T_G \subseteq T^C \quad \exists_i D_i \quad \text{denies} \quad T_G$

ALLOW T^C EXCEPT $D_1 \cdots D_m$ denies T_G \hspace{1cm} (A_2)

Based on Lattice Orderings on Policy Types
Formal Semantics

Recursively check exceptions
ALLOW clauses have DENY clauses as exceptions
Top Level clause determines Blacklist/Whitelist