Discrimination and Fairness in Classification

Anupam Datta

Fall 2016
Fairness in Classification

- Advertising
- Health Care
- Education
- Financial aid
- Banking
- Insurance
- Taxation

many more...
Concern: Discrimination

• Certain attributes should be *irrelevant*!

• Population includes minorities
 – Ethnic, religious, medical, geographic

• Protected by law, policy, ethics
Discrimination notions in US law

• Disparate treatment
 – Special case: formal disparate treatment in which the protected feature (e.g., race, gender) is directly used to make a decision (e.g., about employment, housing, credit)
 – Formally, protected feature has causal effect on outcome (Datta et al. AdFisher paper)
 – Example: Gender has causal effect on advertising of job-related ads
Discrimination notions in US law

• Disparate impact
 – The protected feature (e.g., race, gender) is associated with the decision (e.g., about employment, housing, credit) [see Feldman et al. Disparate Impact paper]
 – Example: Propublica finding of association between race and recidivism score of the COMPAS scoring system
 – Association not problematic if caused by a correlate whose use is a “business necessity”
Discrimination arises even when nobody’s evil

• Google+ tries to classify real vs fake names

• Fairness problem:
 – Most training examples standard white American names: John, Jennifer, Peter, Jacob, ...
 – Ethnic names often unique, much fewer training examples

Likely outcome: Prediction accuracy worse on ethnic names

“Due to Google's ethnocentricity I was prevented from using my real last name (my nationality is: Tungus and Sami)”

Sample Size Disparity:
In a heterogeneous population, smaller groups face larger error
User visits capitalone.com

Capital One uses tracking information provided by the tracking network \([x+1]\) to personalize offers

Concern: *Steering* minorities into higher rates (illegal)

WSJ 2010
$M : V \rightarrow O$

$\text{Classifier (eg. ad network)}$

$\text{Vendor (eg. capital one)}$

$f : O \rightarrow A$

$V : \text{Individuals}$

$O : \text{outcomes}$

$A : \text{actions}$
Goal:
Achieve Fairness in the classification step

\[M : V \rightarrow O \]

\[M(x) \]

\(V: \) Individuals \hspace{1cm} \(O: \) outcomes

Assume unknown, untrusted, un-auditable vendor
First attempt...
Fairness through Blindness
Fairness through Blindness

Ignore all irrelevant/protected attributes

“We don’t even look at ‘race’!”

Useful to avoid formal disparate treatment
Point of Failure

You don’t need to see an attribute to be able to predict it with high accuracy

E.g.: User visits artofmanliness.com

... 90% chance of being male
Second attempt...
Statistical Parity (Group Fairness)

Equalize two groups S, T at the level of outcomes

– E.g. $S = \text{minority}, T = S^c$

$$\Pr[\text{outcome } o \mid S] = \Pr[\text{outcome } o \mid T]$$

“Fraction of people in S getting credit same as in T.”

Useful to prevent disparate impact
Not strong enough as a notion of fairness
 – Sometimes desirable, but can be abused

• Self-fulfilling prophecy: Select smartest students in T, random students in S
 – Students in T will perform better
Lesson: Fairness is *task-specific*

Fairness requires understanding of classification task and protected groups

“Awareness”
Individual Fairness
Approach
Individual Fairness

Treat similar individuals similarly

Similar for the purpose of the classification task
Similar distribution over outcomes
The Similarity Metric
Metric

• Assume *task-specific similarity metric*
 – Extent to which two individuals are similar w.r.t. the classification task at hand
• Ideally captures *ground truth*
 – Or, society’s best approximation
• Open to public discussion, refinement
 – In the spirit of Rawls
• Typically, does not suggest classification!
Examples

• Financial/insurance risk metrics
 – Already widely used (though secret)

• AALIM health care metric
 – health metric for treating similar patients similarly

• Roemer’s relative effort metric
 – Well-known approach in Economics/Political theory
Biggest weakness of theory

How do we construct a similarity metric?
How to formalize this?

Think of V as space with metric $d(x,y)$
similar = small $d(x,y)$

$M : V \rightarrow O$

$M(x)$

$M(y)$

How can we compare $M(x)$ with $M(y)$?
Distributional outcomes

\[M(x) \rightarrow \Delta(O) \]

\[V: \text{Individuals} \quad O: \text{outcomes} \]

How can we compare \(M(x) \) with \(M(y) \)?

Statistical distance!
Metric $d : V \times V \to \mathbb{R}$

Lipschitz condition $\|M(x) - M(y)\| \leq d(x, y)$

This talk: Statistical distance in $[0, 1]$
Statistical Distance

\(P, Q \) denote probability measures on a finite domain \(A \). The statistical distance between \(P \) and \(Q \) is denoted by

\[
D_{tv}(P, Q) = \frac{1}{2} \sum_{a \in A} |P(a) - Q(a)|.
\]

Notation match:
- \(M(x) = P \)
- \(M(y) = Q \)
- \(O = A \)
Statistical Distance

P, Q denote probability measures on a finite domain A. The \textit{statistical distance} between P and Q is denoted by

$$D_{tv}(P, Q) = \frac{1}{2} \sum_{a \in A} |P(a) - Q(a)|.$$

Example: High D

$A = \{0, 1\}$

$P(0) = 1$, $P(1) = 0$

$Q(0) = 0$, $Q(1) = 1$

$D(P, Q) = 1$
Statistical Distance

P, Q denote probability measures on a finite domain A. The statistical distance between P and Q is denoted by

$$D_{tv}(P, Q) = \frac{1}{2} \sum_{a \in A} |P(a) - Q(a)|.$$

Example: Low D

$A = \{0, 1\}$

$P(0) = 1, P(1) = 0$

$Q(0) = 1, Q(1) = 0$

$D(P, Q) = 0$
Statistical Distance

P, Q denote probability measures on a finite domain A. The statistical distance between P and Q is denoted by

$$D_{tv}(P, Q) = \frac{1}{2} \sum_{a \in A} |P(a) - Q(a)|.$$

d{Example: Mid D}

$A = \{0, 1\}$

$P(0) = P(1) = \frac{1}{2}$

$Q(0) = \frac{3}{4}, Q(1) = \frac{1}{4}$

$D(P, Q) = \frac{1}{4}$
Existence Proof

There exists a classifier that satisfies the Lipschitz condition

• **Idea:** Map all individuals to the same distribution over outcomes

• Are we done?
Key elements of approach...
Utility Maximization

Vendor can specify **arbitrary utility function**

\[U : V \times O \rightarrow \mathbb{R} \]

\[U(v,o) = \text{Vendor’s utility of giving individual } v \text{ the outcome } o \]
Maximize vendor’s expected utility subject to Lipschitz condition

\[
\max \mathbb{E} \mathbb{E}_{M(x)} U(x,o) \\
\text{s.t. } M \text{ is } d \text{-Lipschitz}
\]

\[
\|M(x) - M(y)\| \leq d(x,y)
\]
Linear Program Formulation

• Objective function is linear
 – $U(x,o)$ is constant for fixed x, o
 – Distribution over V is known
 – $\{M(x)\} (x \text{ in } V)$ are only variables to be computed

• Lipschitz condition is linear when using statistical distance

• Linear program can be solved efficiently
Discrimination Harms

Information use
• Explicit discrimination
 – Explicit use of race/gender for employment
• Redundant encoding/proxy attributes

Practices
• Redlining
• Self-fulfilling prophesy
• Reverse tokenism
The Story So Far...

- Group fairness
- Individual fairness
- Group fairness does not imply individual fairness
- When does individual fairness imply group fairness?
Statistical Parity (Group Fairness)

Equalize two groups S, T at the level of outcomes

– E.g. S = minority, $T = S^c$

$$\Pr[\text{outcome } o \mid S] = \Pr[\text{outcome } o \mid T]$$

“Fraction of people in S getting credit same as in T.\)”
Individual Fairness

Metric \(d : V \times V \rightarrow \mathbb{R}\)

Lipschitz condition \(\|M(x) - M(y)\| \leq d(x, y)\)
When does Individual Fairness imply Group Fairness?

Suppose we enforce a metric d.

Question: Which *groups of individuals* receive (approximately) equal outcomes?

Theorem: Answer is given by *Earthmover distance* (w.r.t. d) between the two groups.
How different are S and T?

Earthmover Distance:

Cost of transforming uniform distribution on S to uniform distribution on T

$$\sigma_{EM}(S, T) \overset{\text{def}}{=} \min \sum_{x,y \in V} h(x, y)\sigma(x, y)$$

subject to

$$\sum_{y \in V} h(x, y) = S(x)$$

$$\sum_{y \in V} h(y, x) = T(x)$$

$$h(x, y) \geq 0$$
\[\sigma_{EM}(S, T) \overset{\text{def}}{=} \min_{x, y \in V} \sum_{x, y \in V} h(x, y)\sigma(x, y) \]
subject to
\[\sum_{y \in V} h(x, y) = S(x) \]
\[\sum_{y \in V} h(y, x) = T(x) \]
\[h(x, y) \geq 0 \]

\[\text{bias}(d, S, T) = \text{largest violation of statistical parity between } S \text{ and } T \text{ that any d-Lipschitz mapping can create} \]

Theorem:
\[\text{bias}(d, S, T) = d_{EM}(S, T) \]
The Story So Far...

• Group fairness
• Individual fairness
• Group fairness does not imply individual fairness
• Individual fairness implies group fairness if earthmover distance small
Connection to differential privacy

• Close connection between individual fairness and differential privacy [Dwork-McSherry-Nissim-Smith’06]

DP: Lipschitz condition on set of databases
IF: Lipschitz condition on set of individuals

<table>
<thead>
<tr>
<th></th>
<th>Differential Privacy</th>
<th>Individual Fairness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objects</td>
<td>Databases</td>
<td>Individuals</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Output of statistical analysis</td>
<td>Classification outcome</td>
</tr>
<tr>
<td>Similarity</td>
<td>General purpose metric</td>
<td>Task-specific metric</td>
</tr>
</tbody>
</table>
Summary

• Disparate treatment
 – Protected attribute has causal effect on decision
 – Datta et al. AdFisher paper

• Disparate Impact
 – Protected attribute associated with decision
 – Feldman et al. Disparate Impact paper

• Individual fairness
 – “Similar” individuals treated similarly
 – Dwork et al. Fairness through Awareness paper
Questions?
Acknowledgement

• Most of the slides are from Moritz Hardt. Slides 4, 5, 25, 47 are mine as are various comments about related work.