These tutorials are a simplified introduction, and are not sufficient on their own to achieve system safety. You are responsible for the safety of your system.

“Never tell me the odds!”
— Han Solo
Critical Systems

- Anti-Patterns for Critical Systems:
 - You haven’t characterized worst case failures
 - You haven’t assigned SILs to system hazards
 - Validation plan doesn’t match fleet exposure

- Critical systems require low failure rates
 - SIL = Safety Integrity Level
 - Higher level of integrity needed for higher risk
 - Safety critical:
 Loss of life, injury, environmental damage
 - Special care must be taken to avoid deaths
 - Mission critical:
 Brand tarnish, financial loss, company failure
 - Consider a safety critical approach
What Is The Worst Case Failure?

- Worst case might not be obvious
 - Aircraft – software can cause a crash
 - Thermostats/HVAC – software can freezing plumbing
 - Can – rarely! – also kill small children due to overheating

- Key thought experiment:
 - What’s the worst that can happen if ...
 ... your system intentionally tried to cause harm?
 - This identifies system hazards to mitigate

- Failure consequence varies, typically:
 - Multiple fatalities (e.g., plane crash)
 - Single fatality (e.g., single-vehicle car crash)
 - Severe injuries
 - Minor injuries
 - Can consider analogies for mission-critical goals

Takeaway: get a baby monitor with temperature sensor
Safety Integrity Level (SIL)

- **SIL represents:**
 - The risk presented by a system-level hazard
 - The engineering rigor applied to mitigate the risk
 - The permissible residual probability after mitigation

- **Example: DO-178 (aviation flight hours)**
 - DAL A (Catastrophic): 10^9 hrs/failure = 114077 years
 - DAL B (Hazardous): 10^7 hrs/failure = 1141 years
 - DAL C (Major): 10^5 hrs/failure = 11 years
 - DAL D (Minor): 10^3 hrs/failure = 42 days

- **Example: IEC 61508 (industrial controls)**
 - SIL 4: 10^8 hrs/dangerous failure = 11408 years
 - SIL 3: 10^7 hrs/dangerous failure = 1141 years
 - SIL 2: 10^6 hrs/dangerous failure = 114 years
 - SIL 1: 10^5 hrs/dangerous failure = 11 years

https://en.wikipedia.org/wiki/Bhopal_disaster

1984: Bhopal Chemical Plant
Thousands of deaths
(not software related; pre-dates IEC 61508)
Example: IEC 61508

- **HR** = Highly Recommended
- **R** = Recommended
- **NR** = Not Recommended (don’t do this)

Higher SIL Invokes More Engineering Rigor

<table>
<thead>
<tr>
<th>Technique/Measure</th>
<th>Ref</th>
<th>SIL1</th>
<th>SIL2</th>
<th>SIL3</th>
<th>SIL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fault detection and diagnosis</td>
<td>C.3.1</td>
<td>---</td>
<td>R</td>
<td>R</td>
<td>HR</td>
</tr>
<tr>
<td>2 Error detecting and correcting codes</td>
<td>C.3.2</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>HR</td>
</tr>
<tr>
<td>3a Failure assertion programming</td>
<td>C.3.3</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>HR</td>
</tr>
<tr>
<td>3b Safety bag techniques</td>
<td>C.3.4</td>
<td>---</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>3c Diverse programming</td>
<td>C.3.5</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>HR</td>
</tr>
<tr>
<td>3d Recovery block</td>
<td>C.3.6</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>3e Backward recovery</td>
<td>C.3.7</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>3f Forward recovery</td>
<td>C.3.8</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>3g Re-try fault recovery mechanisms</td>
<td>C.3.9</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>HR</td>
</tr>
<tr>
<td>3h Memorising executed cases</td>
<td>C.3.10</td>
<td>---</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>4 Graceful degradation</td>
<td>C.3.11</td>
<td>R</td>
<td>R</td>
<td>NR</td>
<td>HR</td>
</tr>
<tr>
<td>5 Artificial intelligence - fault correction</td>
<td>C.3.12</td>
<td>---</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>6 Dynamic reconfiguration</td>
<td>C.3.13</td>
<td>---</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>7a Structured methods including for example, JSD, MASCOT, SADT and Yourdon.</td>
<td>C.2.1</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
<td>HR</td>
</tr>
<tr>
<td>7b Semi-formal methods</td>
<td>Table B.7</td>
<td>R</td>
<td>R</td>
<td>HR</td>
<td>HR</td>
</tr>
<tr>
<td>7c Formal methods including for example, CCS, CSP, HOL, Lotos, OBJ, temporal logic, VDM and Z</td>
<td>C.2.4</td>
<td>---</td>
<td>R</td>
<td>R</td>
<td>HR</td>
</tr>
<tr>
<td>8 Computer-aided specification tools</td>
<td>[IEC 61508]</td>
<td>B.2.4</td>
<td>R</td>
<td>R</td>
<td>HR</td>
</tr>
</tbody>
</table>

SIL 1: lowest integrity level

(low risk)

SIL 4: highest integrity level

(unacceptable risk)
Bigger fleets have increased exposure
- 250 Million US vehicles @ 1 hour/day
 = 2.5 * 10^8 hrs/day exposure
- If “unlikely” failures happen every million hours...
 that’s: 2.5 * 10^8 hrs / 10^6 hrs per event
 ➔ 250 events every day
- This is why 10^8 to 10^10 hrs is a typical goal

Hardware components fail at ~10^5-10^6 hrs
- Need two independently failing components to get to 10^9 hours!
 - This motivates redundancy for life-critical applications (SIL 3 & SIL 4)

For mission-critical systems, consider:
- Fleet exposure = # units * operational hours/unit
- Number of acceptable failures
- Compute failure rate = failures / hours; pick an appropriate SIL

https://goo.gl/dH5FQ1
Best Practices For Critical Systems

- Characterize worst case failure scenarios
 - Assign SIL based on relevant safety standard
 - Use engineering rigor for software SIL
 - Use redundancy for ultra-low failure rates
 - Consider fleet exposure, not just single unit

- Pitfalls:
 - Software redundancy is difficult, and diversity is usually impracticable
 - Designer’s intuition about “realistic” faults usually optimistic
 - At 10^{-9}/hr, random chance is a close approximation of a malicious adversary
 - Going through the motions not enough for SIL-based process