Architecture Overview

Kosar Jaff
Intel Corporation

Purpose

- Discuss usage model for USB
- Provide introductory technical overview
- Lead into detailed sessions to follow
Historical PC Perspective

- 15-year Baggage: Incremental addition of an interface per device
 - Limited application model for PC
 - Ports not designed for sharing
 - PS/2, parallel, serial, joystick
 - Interface speeds were much lower
 - Add-in cards were typical method for adding a high-bandwidth device
- Real-time & MM stretch these interfaces

Why USB?

- Ease of Use
 - Plug and Play capabilities for “Outside the Box” peripherals
- “PC/Phone Integration”
 - Windows*/TAPI based Adaptors and Communication Applications
External Bus Taxonomy

<table>
<thead>
<tr>
<th>BANDWIDTH</th>
<th>DEVICE COST</th>
<th>APPLICATIONS</th>
<th>ATTRIBUTES</th>
<th>STD FEATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW 10 - 100 Kb/s</td>
<td>$5-25</td>
<td>Input Devices, Control Functions</td>
<td>Very Low cost, Ease of Use, Lots of fanout</td>
<td>1997</td>
</tr>
<tr>
<td>MEDIUM 200K - 10Mb/s</td>
<td>$15-150</td>
<td>Telephony, Modem, Audio, Scanner</td>
<td>Low cost, Guaranteed latency</td>
<td>1997</td>
</tr>
<tr>
<td>HIGH 100 - 400 Mb/s</td>
<td>$100-500</td>
<td>Entertainment, A/V, Imaging</td>
<td>Peer-to-peer, Multiple channels</td>
<td>TBD</td>
</tr>
<tr>
<td>COMPUTE 1+ Gb/s</td>
<td>$200-500</td>
<td>Primary Disk, Home Backbone</td>
<td>Very High bandwidth, Fiber capability</td>
<td>1999+</td>
</tr>
</tbody>
</table>

USB Focus on Low Cost, High Volume Applications

PC Connectivity Vision

USB in 1996: Initially introduced as an incremental connector for new applications.

USB Future: The PC evolves into a simpler, easier to use appliance.
Universal Serial Bus Focus

♦ For today’s PC at current cost points
 – Optimized for high-integration
 ■ Medium speed signalling with commodity HW
 ■ Practical for wider range of peripherals
 – Common attach point
 ■ Intelligent interfaces allow sharing
 ■ Simple user paradigm
 ■ Enables port consolidation (mouse, keyboard, gameport, serial & parallel)

Standards Alternatives

Standards Body
 e.g. IEEE, ANSI, CCITT

Industry Leadership
 e.g. TAPI, PCI, IrDA

It Happened One Day
 e.g. ISA, SoundblasterTM

Michael Slater:
Industry led standards are effective !!
Technical Overview

- Hardware Architecture
- Bus Topology
- Client Model and Transaction Formats
- Transfer Types, Packet Formats
- Frame Structure
- Physical Layer

USB Hardware Overview

- Topology
 - Tiered Star (Distributes Connectivity Points)
 - 126 devices
 - Up to 6 tiers (up to 5 metres per segment)
- Bus transactions
 - Speed: 12Mbps aggregate
 - 1.5Mbps sub-channel
 - Isochronous and Asynchronous
 - Media access controlled by host
- Configuration
 - Dynamic insertion-removal
 - Autoconfiguration on change
- Physical Layer
 - 2-wire differential signaling, NRZI coded with bit stuffing
 - Supply Sourcing +5V
 - Signaling at CMOS 3.3V
 - 4 pin connector, 4 wire cable
USB Topology

- **Host**
 - One PC host per system
- **Hub**
 - Provides connecting ports, power, terminations
 - Self-Powered or Bus Powered
- **Device, Interfaces and Endpoints**
 - Device is a collection of interface(s)
 - Interface is a collection of endpoints
 - Addressing up to 126 devices and 16 endpoints

USB Hub Function

- **Port Control**
 - Connection detect
 - Port Enable/Disable
 - Reset/Resume Signaling
- **Data Switch**
 - Signal Regeneration
 - Robustness/Recovery
- **Power Distribution**
Basic USB Model

Host Layers

- **USB Bus Interface**
 - Physical interface to wire
 - Manages low-level protocol
- **USB System Software**
 - Provides interfaces to driver layers
 - Manages standard device objects
- **Client Software**
 - E.g. device drivers
 - Manages capability

Actual communications flow

Logical communications flow

Implementation Focus Area

Physical Interface, Signalling

Provides common device abstraction

Capability
Device Layers

- **USB Bus Interface**
 - Physical interface to wire
 - Manages low-level protocol
- **USB Logical Device**
 - Defines common view of device by host
 - Manages high-level protocol
- **Function**
 - Represents capability delivered by the device

Device Abstractions

- **End Point**
 - Ultimate data source or sink at the device end
 - Unique address, unidirectional, transfer characteristics
- **Pipe**
 - Association of endpoint with host SW owner
- **Interface**
 - Collection of pipes
 - Map to a capability
 - Owned by exactly 1 software client
Detailed Host / Device View

- **Host**
 - Endpoint 0
 - Required, shared
 - Configuration access
 - Capability control
 - Client SW manages an interface
 - USB System manages devices

- **Device**
 - Function manages a function
 - Interface to an endpoint
 - USB Bus Interface

Client Software <-> Function

- **Host**
- **Client Software**
- **Buffers**
- **Pipes**
- **Data Flows**
- **Endpoints**
- **USB Device**
- **Interface**

Pipe represents connection abstraction between two horizontal layers.
Interfaces

- Made of 0 or more pipes
- Has a client owner
 - Accesses individual pipes
 - Shares default pipe
- More dynamically configured than devices

Endpoints

- One endpoint for each pipe
Endpoints

- One endpoint for each pipe
- Endpoint zero

Other Endpoints
- Optional, up to 15 IN, 15 OUT at fullspeed
- Optional, up to 2 additional at lowspeed
- Determined by implementation requirements
- Endpoint characteristics vary
Pipes

- Connect host memory buffer to endpoint FIFO
- Stream Type
 - No USB imposed data format
 - Unidirectional
- Message Type
 - USB imposed data format
 - Bidirectional

Communications Layers

- Physical
- Packets
- Transactions
 - 3 phases (token, data, handshake)
 - Token phase has token packet sent by host
 - Always present
 - Packet ID (PID) identifies transaction type
 - Other phases have 0 or more packets
- Transfers
Transfers to Transactions

Transaction Protocol

- Host based token polling
 - Data from host-to-function and function-to-host
 - Host handles most of the protocol complexity
 - Peripheral design is simple and low-cost
Robustness

- Handshake to acknowledge data transfer and flow control
- Very low raw physical bit error rate (<10^{-10})
- PID check bits, CRC protection, plus hardware retry option
- Data Toggle Sequence bits

Bounded transfer characteristics

- Data transfer bandwidth and latency prenegotiated
- Flow control for peripheral buffer management
USB Transfer Types

- Isochronous (e.g.: Audio, Telephony, Motion camera.....)
- Interrupt (e.g.: Mouse, Joystick....)
USB Transfer Types

- Isochronous (e.g.: Audio, Telephony, Motion camera.....)
- Interrupt (e.g.: Mouse, Joystick....)
- Bulk (e.g.: Printer, Scanner, Still camera.....)

- Control (e.g.: Configuration, Messages)
 - Bursty, bi-directional, higher level protocol
 - Used for bus management, configuration, device control
Packet Formats

PID

8 bits

ADDR

7 bits

ENDP

4 bits

CRC5

5 bits

Token (In/Out)

- **PID** 8 bits
- **DATA** 0-1023 bytes
- **CRC16** 16 bits

Data (Toggle)

- **PID** 8 bits
- **DATA** 0-1023 bytes
- **CRC5** 5 bits

Handshake/Low Speed Preamble

- **PID** 8 bits

Start of Frame

- **PID** 8 bits
- **Frame Number** 11 bits
- **CRC5** 5 bits

All Packets Are Prefaced With SYNC Field and Terminated With EOP

USB Frame Model

- **Frame** = 1ms
- **Slot**

- **Stereo Audio**
- **Low Speed**
- **BULK**

(not to scale)
Connectors and Cables

- Connectors
 - 4-Position with shielded housing
 - Positive Retention
 - Blind Mating Capabilities
- Cables
 - 28 AWG twisted pair for signalling
 - 20-28 AWG pair for power
 - Shielding for fully rated segments

Power Distribution

- Significant capability of USB
 - Eliminate wall adaptors
- Hubs may be self-powered or bus-powered
 - Two current levels: 100 & 500 mA
 - Overcurrent protection for safety
 - Wire gauge options: 20-28 AWG
Voltage Drop

- Voltage drop per wire/connector: 0.125 V
- Budget for power switch: 0.100 V

USB Connections and Terminations

- Twisted Pair Shielded: 2c = 90W±19%, 5 Meters Max.
 - R1 = 19KW±19%
 - R2 = 1.5KW±19%

- Untwisted, Unshielded: 2 Meters Max.
 - R1 = 19KW±19%
 - R2 = 1.5KW±19%

- Hub Port 0 or Full Speed Function
- Low Speed Function
Data Signaling

- Bi-directional, half-duplex link
- Embedded clock and data
- Differential signal pair
- 12 Mbit / sec Full Speed (F.S.) bit rate
- 1.5 Mbit / sec Low Speed (L.S.) bit rate

Signaling States

- J-state
Signaling States

- J-state
- K-state (Inverse of J-state)

- Single ended zero (SE0) state
 - End of Packet identifier (EOP)
 - Signaling reset
 - Disconnected line
USB Transceiver

- **Differential Driver**
 - Slew rate controlled
 - SE0 drive capability
- **Differential Receiver**
 - Sensitivity <200mV
 - Common mode range: <1.0V to >3.0V
- **Single-Ended Receivers**
 - Threshold: 0.6V - 1.5V

Low-Speed Mode

- Allows very-low-cost devices to be built without compromising data rate for faster devices
 - Mice, keyboards, most user interface peripherals don't need fast data rate
- Eliminates need for shielded twisted pair cable
- Allows use of less-expensive IC process technology
- But reduced functionality
Low Speed

- 1.5 Mb/s
 - Unshielded, untwisted cable
 - Saves EMI suppression costs
 - 1.5% Frequency tolerance
- Driver characteristics
 - Rise/ Fall time: Min 75ns, Max 300ns
 - Required on low speed functions and on the downstream ports of Hubs

Suspend & Resume

- Suspend
 - All devices support suspend
 - Enter suspend state after seeing idle bus for 3 ms
 - Suspend current ≤ 500 μA from bus
- Resume
 - Devices resume on seeing non-J state
 - USB devices can cause “remote wake-up” by signaling with a K-state
Enumeration

- Hubs detect attachments
 - Report via status change endpoint
- Host RESETs port
 - If new device is a hub, disables new hub’s ports
- Host read configuration information and configures device

Architecture Summary

USB uses a host-directed protocol which:

- Supports dynamic attachment of large number and variety of devices
- Provides power distribution and power management facilities
- Is abstracted as a transfer model for host software clients
Complete USB Standard

Compelling Applications
- **End User Marketing**
 - End User Apps
 - PC and Telephone Industry & Media
 - Telephony, Gaming, Productivity

Breadth of Peripherals
- **Peripheral Marketing**
 - Integrated Products
 - S/W Ingredients
 - H/W Ingredients
 - PC & Telephone IHVs
 - Devices: Input, Telephony, Hubs, etc.
 - New Std. DDs, SDKs
 - Microcontrollers, FPGA/ASIC, Codecs, DAA, ...

Volume Platform
- **OEM Marketing**
 - Integrated Products
 - S/W Ingredients
 - H/W Ingredients
 - PC OEM
 - Motherboards
 - Dev Kit, Std. DDs, Next OS update
 - Chipsets

Industry Forum
- **Industry Marketing**
 - OS Support
 - STDS Mechanism
 - S/W Standards
 - H/W Standards
 - Industry Leaders + USB-IF
 - Microsoft, IBM, etc.
 - USB-IF: Licensing, Compliance
 - Specification: 1.0
 - Specification: 1.0

Industry Forum

- Specification is royalty-free and openly available
- USB Implementers Forum for product support and event coordination
 - >400 member companies
 - 8 Developer’s Conferences
 - 11 Compliance Workshops
- Intel providing visible leadership
Product Momentum

- All major OEMs now shipping systems with connectors and Windows drivers installed
- Device and hub building blocks from Intel CEG and several other vendors
Product Momentum

◆ All major OEMs now shipping systems with
collectors and Windows drivers installed
◆ Device and hub building blocks from
 Intel CEG and several other vendors
◆ OEM bundles and retail channel peripherals